期刊文献+
共找到56,148篇文章
< 1 2 250 >
每页显示 20 50 100
SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm
1
作者 Jiahui Liu Lang Li +1 位作者 Di Li Yu Ou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4641-4657,共17页
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de... Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods. 展开更多
关键词 Side-channel analysis correlation power analysis genetic algorithm CROSSOVER MUTATION
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
2
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
3
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
4
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection Support VECTOR machine (SVM) RECURSIVE feature ELIMINATION (RFE) genetic algorithm (ga) Parameter SELECTION
下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
5
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
6
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSga)-II
下载PDF
GA-iForest: An Efficient Isolated Forest Framework Based on Genetic Algorithm for Numerical Data Outlier Detection 被引量:4
7
作者 LI Kexin LI Jing +3 位作者 LIU Shuji LI Zhao BO Jue LIU Biqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期1026-1038,共13页
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith... With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method. 展开更多
关键词 outlier detection isolation tree isolated forest genetic algorithm feature selection
下载PDF
FPGA PLACEMENT OPTIMIZATION BY TWO-STEP UNIFIED GENETIC ALGORITHM AND SIMULATED ANNEALING ALGORITHM 被引量:6
8
作者 Yang Meng A.E.A. Almaini Wang Pengjun 《Journal of Electronics(China)》 2006年第4期632-636,共5页
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it... Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool. 展开更多
关键词 genetic algorithm ga Simulated Annealing (SA) PLACEMENT FPga EDA
下载PDF
Novel methodology for casting process optimization using Gaussian process regression and genetic algorithm 被引量:3
9
作者 Yao Weixiong Yang Yi Zeng Bin 《China Foundry》 SCIE CAS 2009年第3期232-240,共9页
High pressure die casting (HPDC) is a versatile material processing method for mass-production of metal parts with complex geometries,and this method has been widely used in manufacturing various products of excellent... High pressure die casting (HPDC) is a versatile material processing method for mass-production of metal parts with complex geometries,and this method has been widely used in manufacturing various products of excellent dimensional accuracy and productivity. In order to ensure the quality of the components,a number of variables need to be properly set. A novel methodology for high pressure die casting process optimization was developed,validated and applied to selection of optimal parameters,which incorporate design of experiment (DOE),Gaussian process (GP) regression technique and genetic algorithms (GA). This new approach was applied to process optimization for cast magnesium alloy notebook shell. After being trained,using data generated by PROCAST (FEM-based simulation software),the GP model approximated well with the simulation by extracting useful information from the simulation results. With the help of MATLAB,the GP/GA based approach has achieved the optimum solution of die casting process condition settings. 展开更多
关键词 high pressure DIE CASTING PROCESS optimization numerical simulation gaUSSIAN PROCESS genetic algorithm
下载PDF
An Improved Hybrid Genetic Algorithm for Chemical Plant Layout Optimization with Novel Non-overlapping and Toxic Gas Dispersion Constraints 被引量:8
10
作者 徐圆 王振宇 朱群雄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期412-419,共8页
New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In... New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution. 展开更多
关键词 plant layout non-overlapping constraints toxic gas dispersion genetic algorithm
下载PDF
Kriging Surrogate-Based Genetic Algorithm Optimization for Blade Design of a Horizontal Axis Wind Turbine 被引量:6
11
作者 Nantiwat Pholdee Sujin Bureerat Weerapon Nuantong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期261-273,共13页
Horizontal axis wind turbines are some of the most widely used clean energy generators in the world.Horizontal axis wind turbine blades need to be designed for optimization in order to maximize efficiency and simultan... Horizontal axis wind turbines are some of the most widely used clean energy generators in the world.Horizontal axis wind turbine blades need to be designed for optimization in order to maximize efficiency and simultaneously minimize the cost of energy.This work presents the optimization of new MEXICO blades for a horizontal axis wind turbine at the wind speed of 10 m/s.The optimization problem is posed to maximize the power coefficient while the design variables are twist angles on the blade radius and rotating axis positions on a chord length of the airfoils.Computational fluid dynamics was used for the aerodynamic simulation.Surrogate-assisted optimization was applied to reduce computational time.A surrogate model called a Kriging model,using a Gaussian correlation function along with various regression models,was applied while a genetic algorithm was used as an optimizer.The results obtained in this study are discussed and compared with those obtained from the original model.It was found that the Kriging model with linear regression gives better results than the Kriging model with second-order polynomial regression.The optimum blade obtained in this study showed better performance than the original blade at a low wind speed of 10 m/s. 展开更多
关键词 Wind turbine OPTIMIZATION KRIGING genetic algorithms gaUSSIAN
下载PDF
Combined Novel Gate Level Model and Critical Primary Input Sharing for Genetic Algorithm Based Maximum Power Supply Noise Estimation
12
作者 田志新 刘勇攀 杨华中 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第9期1375-1380,共6页
A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces com... A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces computation time by 10.7% compared with previous methods. Furthermore,a primary input critical factor model that captures the extent of primary inputs' PSN contribution is formulated. Based on these models,a novel niche genetic algorithm is proposed to estimate PSN more effectively. Compared with general genetic algorithms, this novel method can achieve up to 19.0% improvement on PSN estimation with a much higher convergence speed. 展开更多
关键词 power supply noise gate level model niche genetic algorithm
下载PDF
GENETIC ALGORITHMS AND GAME THEORY FOR HIGH LIFT DESIGN PROBLEMS IN AERODYNAMICS 被引量:7
13
作者 PériauxJacques WangJiangfeng WuYizhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第1期7-13,共7页
A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timiz... A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies. 展开更多
关键词 gaME theory genetic algorithms multi-ob-jective aerodynamic optimization 基因算法 博奕论 气动优化 翼型
下载PDF
A Genetic Algorithm-Based Optimized Transfer Learning Approach for Breast Cancer Diagnosis
14
作者 Hussain AlSalman Taha Alfakih +2 位作者 Mabrook Al-Rakhami Mohammad Mehedi Hassan Amerah Alabrah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2575-2608,共34页
Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analy... Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analysis of mammographic images,challenges such as low contrast,image noise,and the high dimensionality of features often degrade model performance.Addressing these challenges,our study introduces a novel method integrating Genetic Algorithms(GA)with pre-trained Convolutional Neural Network(CNN)models to enhance feature selection and classification accuracy.Our approach involves a systematic process:first,we employ widely-used CNN architectures(VGG16,VGG19,MobileNet,and DenseNet)to extract a broad range of features from the Medical Image Analysis Society(MIAS)mammography dataset.Subsequently,a GA optimizes these features by selecting the most relevant and least redundant,aiming to overcome the typical pitfalls of high dimensionality.The selected features are then utilized to train several classifiers,including Linear and Polynomial Support Vector Machines(SVMs),K-Nearest Neighbors,Decision Trees,and Random Forests,enabling a robust evaluation of the method’s effectiveness across varied learning algorithms.Our extensive experimental evaluation demonstrates that the integration of MobileNet and GA significantly improves classification accuracy,from 83.33%to 89.58%,underscoring the method’s efficacy.By detailing these steps,we highlight the innovation of our approach which not only addresses key issues in breast cancer imaging analysis but also offers a scalable solution potentially applicable to other domains within medical imaging. 展开更多
关键词 Deep learning convolution neural network(CNN) support vector machine(SVM) genetic algorithmic(ga) breast cancer an optimized smart diagnosis
下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
15
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
下载PDF
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
16
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(ga) mining perfor-mance
下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
17
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall Fuzzy logic genetic algorithm
下载PDF
Optimized parameters of downhole all-metal PDM based on genetic algorithm
18
作者 Jia-Xing Lu Ling-Rong Kong +2 位作者 Yu Wang Chao Feng Yu-Lin Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2663-2676,共14页
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,... Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology. 展开更多
关键词 Positive displacement motor genetic algorithm Profile optimization Matlab programming Overflow area
下载PDF
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
19
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 Multi-objective optimization genetic algorithm ant lion optimizer METAHEURISTIC
下载PDF
New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications
20
作者 Shimaa M.Amer Ashraf A.M.Khalaf +3 位作者 Amr H.Hussein Salman A.Alqahtani Mostafa H.Dahshan Hossam M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2749-2767,共19页
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t... Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL. 展开更多
关键词 Array synthesis convolution process genetic algorithm(ga) half power beamwidth(HPBW) linear antenna array(LAA) side lobe level(SLL) quality of service(QOS)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部