This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This pose...This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
In this study. an automated conformer selection procedure using generic algorithm (GA) has been applied in comparative molecular field analysis (CoMFA) method. Using genetic algorithm. the 3D-QSAR model is optimized t...In this study. an automated conformer selection procedure using generic algorithm (GA) has been applied in comparative molecular field analysis (CoMFA) method. Using genetic algorithm. the 3D-QSAR model is optimized to an optimal one. From the calculation results, a group of QSAR models with high predictive ability can be obtained, which is superior than using conventional CoMFA: meanwhile. the active conformers for these compounds in data set can be determined fi om the best model.展开更多
In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, ...In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, 3D printing of CFRP composites has been developed. The 3D printing process of CFRP composites enables us to fabricate CFRP laminates with arbitrary curvilinear fibre plies. This indicates that the optimization of the in-plane curved carbon fibre placement in a planar ply is strongly required to realize superior 3D printed composites. In the present paper, in-plane curved carbon fibre alignment of a ply with an open hole is optimized in terms of maximization of the fracture strength. For the optimization process, a genetic algorithm is adopted. To describe curved carbon fibre alignments in a planar ply, stream lines of perfect flow is employed. By using the stream lines of the perfect flow, number of optimization parameters is significantly reduced. After the optimization, the fracture strength of CFRP laminate is compared with the results of unidirectional CFRP ply. The curved fibre placement in a planar ply shows superior fracture improvement.展开更多
This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplif...This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplified model of protein structure. The lowest-energy values required for forming the native conformation of proteins are searched by GATS, and then the coarse structures (i.e., simplified structure) of the proteins are obtained according to the multiple angle parameters corresponding to the lowest energies. All the coarse structures form single hydrophobic cores surrounded by hydrophilic residues, which stay on the right side of the actual characteristic of protein structure. It demonstrates that this approach can predict the 3D protein structure effectively.展开更多
A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The...A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that(1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited,(2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller,(3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.展开更多
On the basis of the objective functions,dithering optimization techniques can be divided into the intensity-based optimization technique and the phase-based optimization technique.However,both types of techniques are ...On the basis of the objective functions,dithering optimization techniques can be divided into the intensity-based optimization technique and the phase-based optimization technique.However,both types of techniques are spatial-domain optimization techniques,while their measurement performances are essentially determined by the harmonic components in the frequency domain.In this paper,a novel genetic optimization technique in the frequency domain is proposed for highquality fringe generation.In addition,to handle the time-consuming difficulty of genetic algorithm(GA),we first optimize a binary patch,then join the optimal binary patches together according to periodicity and symmetry so as to generate a full-size pattern.It is verified that the proposed technique can significantly enhance the measured performance and ensure the robustness to various amounts of defocusing.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under cha...This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under changes of winding angle due to deformation,we use three-dimensional(3D)thick-walled cylinder theory with the 3D Hashin failure criterion and theory of the evolution of damage to composite materials,to formulate a model that analyzes the progressive failure of RTPs.The accuracy of the model was verified by experiments.A model to optimize the multiple winding angles of the RTPs was then established using the model for progressive failure analysis and a multi-island genetic algorithm.The optimal scheme for winding angles of RTPs capable of withstanding the maximum internal/external pressure was obtained.The simulation results showed that the ply number of the reinforced layer has a prominent nonlinear effect on the internal and external pressure capacity of the RTPs.Compared with RTPs with a single angle of±55°,the multiple winding angle overlay scheme based on the multi-angle optimization model improved the internal and external pressure capacity of the RTPs,and the improvement in the external pressure capacity was significantly better than the internal pressure carrying capacity.展开更多
The product of high complex profile,high strength,high productivity and excellent material properties with infinite length can be produced by Continuous Extrusion(CE)process.The numerical simulation of Aluminum(AA 110...The product of high complex profile,high strength,high productivity and excellent material properties with infinite length can be produced by Continuous Extrusion(CE)process.The numerical simulation of Aluminum(AA 1100)feedstock material at different wheel velocities,product diameter,feedstock temperature,die temperature and friction condition has been carried out using 3D simulation tool Design Environment for Forming(DEFORM-3D)in this paper.The development of mathematical model is carried out to investigate the influence of wheel velocity,extrusion ratio,feedstock temperature,die temperature and friction conditions on total load required for the deformation and extrusion of feedstock material through Response Surface Methodology(RSM).The statistical significance of mathematical model is verified through analysis of variance(ANOVA).The most optimum value of extrusion load has been found to be 136.4 kN through iterative process of Genetic Algorithm(GA)using Artificial Neural Network(ANN).The optimized value of input process variables for minimum value of extrusion load obtained has been found to be 13 Revolutions per Minute(RPM)as wheel velocity,5 mm as product diameter,0.95 as friction condition,650◦C as feedstock temperature and 550◦C as die temperature.This paper with proposed methodology will be helpful for industries working in the area of CE in terms of minimizing energy consumption during production process of bus bars,tubes,wires,cables,sheets,plates,strips,etc.展开更多
文摘This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
文摘In this study. an automated conformer selection procedure using generic algorithm (GA) has been applied in comparative molecular field analysis (CoMFA) method. Using genetic algorithm. the 3D-QSAR model is optimized to an optimal one. From the calculation results, a group of QSAR models with high predictive ability can be obtained, which is superior than using conventional CoMFA: meanwhile. the active conformers for these compounds in data set can be determined fi om the best model.
文摘In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, 3D printing of CFRP composites has been developed. The 3D printing process of CFRP composites enables us to fabricate CFRP laminates with arbitrary curvilinear fibre plies. This indicates that the optimization of the in-plane curved carbon fibre placement in a planar ply is strongly required to realize superior 3D printed composites. In the present paper, in-plane curved carbon fibre alignment of a ply with an open hole is optimized in terms of maximization of the fracture strength. For the optimization process, a genetic algorithm is adopted. To describe curved carbon fibre alignments in a planar ply, stream lines of perfect flow is employed. By using the stream lines of the perfect flow, number of optimization parameters is significantly reduced. After the optimization, the fracture strength of CFRP laminate is compared with the results of unidirectional CFRP ply. The curved fibre placement in a planar ply shows superior fracture improvement.
基金Supported by the National Natural Science Foundation of China (60975031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China, the Open Foundation of State Key Laboratory of Bioelectronics of Southeast University, China, and the Natural Science Foundation of Hubei Province, China (2008CDB344 and 2009CDA034)
文摘This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplified model of protein structure. The lowest-energy values required for forming the native conformation of proteins are searched by GATS, and then the coarse structures (i.e., simplified structure) of the proteins are obtained according to the multiple angle parameters corresponding to the lowest energies. All the coarse structures form single hydrophobic cores surrounded by hydrophilic residues, which stay on the right side of the actual characteristic of protein structure. It demonstrates that this approach can predict the 3D protein structure effectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.51209217)
文摘A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that(1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited,(2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller,(3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2017C31080)
文摘On the basis of the objective functions,dithering optimization techniques can be divided into the intensity-based optimization technique and the phase-based optimization technique.However,both types of techniques are spatial-domain optimization techniques,while their measurement performances are essentially determined by the harmonic components in the frequency domain.In this paper,a novel genetic optimization technique in the frequency domain is proposed for highquality fringe generation.In addition,to handle the time-consuming difficulty of genetic algorithm(GA),we first optimize a binary patch,then join the optimal binary patches together according to periodicity and symmetry so as to generate a full-size pattern.It is verified that the proposed technique can significantly enhance the measured performance and ensure the robustness to various amounts of defocusing.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
基金This research was funded by the National Key Research and Development Program of China(No.2016YFC0303800)the National Natural Science Foundation of China(No.51579245).
文摘This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under changes of winding angle due to deformation,we use three-dimensional(3D)thick-walled cylinder theory with the 3D Hashin failure criterion and theory of the evolution of damage to composite materials,to formulate a model that analyzes the progressive failure of RTPs.The accuracy of the model was verified by experiments.A model to optimize the multiple winding angles of the RTPs was then established using the model for progressive failure analysis and a multi-island genetic algorithm.The optimal scheme for winding angles of RTPs capable of withstanding the maximum internal/external pressure was obtained.The simulation results showed that the ply number of the reinforced layer has a prominent nonlinear effect on the internal and external pressure capacity of the RTPs.Compared with RTPs with a single angle of±55°,the multiple winding angle overlay scheme based on the multi-angle optimization model improved the internal and external pressure capacity of the RTPs,and the improvement in the external pressure capacity was significantly better than the internal pressure carrying capacity.
文摘The product of high complex profile,high strength,high productivity and excellent material properties with infinite length can be produced by Continuous Extrusion(CE)process.The numerical simulation of Aluminum(AA 1100)feedstock material at different wheel velocities,product diameter,feedstock temperature,die temperature and friction condition has been carried out using 3D simulation tool Design Environment for Forming(DEFORM-3D)in this paper.The development of mathematical model is carried out to investigate the influence of wheel velocity,extrusion ratio,feedstock temperature,die temperature and friction conditions on total load required for the deformation and extrusion of feedstock material through Response Surface Methodology(RSM).The statistical significance of mathematical model is verified through analysis of variance(ANOVA).The most optimum value of extrusion load has been found to be 136.4 kN through iterative process of Genetic Algorithm(GA)using Artificial Neural Network(ANN).The optimized value of input process variables for minimum value of extrusion load obtained has been found to be 13 Revolutions per Minute(RPM)as wheel velocity,5 mm as product diameter,0.95 as friction condition,650◦C as feedstock temperature and 550◦C as die temperature.This paper with proposed methodology will be helpful for industries working in the area of CE in terms of minimizing energy consumption during production process of bus bars,tubes,wires,cables,sheets,plates,strips,etc.