To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexe...To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.展开更多
Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the inc...Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.展开更多
The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 flo...The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 floods 14 are due to intercepted catchment contribution. The existing flood forecasting systems are mostly for upstream catchment, forecasting the inflow to reservoir, whereas the downstream catchment is devoid of a sound flood forecasting system. Therefore, in this study an attempt has been made to develop a workable forecasting system for downstream catchment. Instead of taking the flow time series concurrent flood peaks of 12 years of base and forecasting stations with its corresponding travel time are considered for analysis. Both statistical method and ANN based approach are considered for finding the peak to reach at delta head with its corresponding travel time. The travel time has been finalized adopting clustering techniques, there by differentiating high, medium and low peaks. The method is simple and it does not take into consideration the rainfall and other factors in the intercepted catchment. A comparison between both methods are tested and it is found that the ANN methods are better beyond the calibration range over statistical method and the efficiency of either methods reduces as the prediction reach is extended. However, it is able to give the peak discharge at delta head before 24 hour to 37 hour for high to low peaks.展开更多
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.
文摘Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.
文摘The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 floods 14 are due to intercepted catchment contribution. The existing flood forecasting systems are mostly for upstream catchment, forecasting the inflow to reservoir, whereas the downstream catchment is devoid of a sound flood forecasting system. Therefore, in this study an attempt has been made to develop a workable forecasting system for downstream catchment. Instead of taking the flow time series concurrent flood peaks of 12 years of base and forecasting stations with its corresponding travel time are considered for analysis. Both statistical method and ANN based approach are considered for finding the peak to reach at delta head with its corresponding travel time. The travel time has been finalized adopting clustering techniques, there by differentiating high, medium and low peaks. The method is simple and it does not take into consideration the rainfall and other factors in the intercepted catchment. A comparison between both methods are tested and it is found that the ANN methods are better beyond the calibration range over statistical method and the efficiency of either methods reduces as the prediction reach is extended. However, it is able to give the peak discharge at delta head before 24 hour to 37 hour for high to low peaks.