Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
针对测地线活动轮廓(geodesic active contour,GAC)模型轮廓演化速度慢的问题,构造一个区域灰度相似性信息项,对GAC模型的能量泛函进行改进,加快轮廓演化速度,将其用于肺部薄扫CT(computed tomography)图像序列中肺实质的自动分割。采...针对测地线活动轮廓(geodesic active contour,GAC)模型轮廓演化速度慢的问题,构造一个区域灰度相似性信息项,对GAC模型的能量泛函进行改进,加快轮廓演化速度,将其用于肺部薄扫CT(computed tomography)图像序列中肺实质的自动分割。采用基于Nystrom逼近的谱聚类算法分割CT图像序列中间位置CT中的肺实质,计算其灰度均值与标准差,构造区域灰度相似性信息项,以分割好的肺实质轮廓作为初始轮廓,分别从上下两个方向采用改进了能量泛函的GAC模型实现其它切片中肺实质的分割。实验结果表明,该方法能够较好实现肺实质的自动分割,与医师分割结果的重合率可达94.83%,时间消耗较少。展开更多
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
文摘针对测地线活动轮廓(geodesic active contour,GAC)模型轮廓演化速度慢的问题,构造一个区域灰度相似性信息项,对GAC模型的能量泛函进行改进,加快轮廓演化速度,将其用于肺部薄扫CT(computed tomography)图像序列中肺实质的自动分割。采用基于Nystrom逼近的谱聚类算法分割CT图像序列中间位置CT中的肺实质,计算其灰度均值与标准差,构造区域灰度相似性信息项,以分割好的肺实质轮廓作为初始轮廓,分别从上下两个方向采用改进了能量泛函的GAC模型实现其它切片中肺实质的分割。实验结果表明,该方法能够较好实现肺实质的自动分割,与医师分割结果的重合率可达94.83%,时间消耗较少。