A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts o...A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts of bluntness and outgrowth were introduced to analyze powder sphericity and satellite index quantitatively.The results showed that the median diameters of all atomized powders ranged from 25 to 33μm.The highest yield rate(72.13%)of fine powder(<50μm)was obtained at a superheat of 350 K.The powder size decreased with increasing melt superheat but increased with increasing delivery tube diameter.Powders with bluntness values between 96%and 98%accounted for over 60%.The outgrowth values demonstrated that 70%-85%of all powders did not contain satellite particles,with few powders adhered two or three particles.Not only Al and Si phases were present but also a metastable Al9Si phase was detected.展开更多
The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The ...The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×10^4 to 1.11×10^6 K/s.展开更多
Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)d...Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)during gas atomization(GA)process.The experimental validation indicated that the numerical models could give a reasonable prediction on the melt flow process in the MDN.With the decrease of the MDN inner-diameter,the melt flow resistance increased for both molten aluminum and iron,especially achieving an order of 10^(2) kPa in the case of the MDN inner-diameter≤1 mm.Based on the conventional GA process,the positive pressure was imposed on the viscous aluminum alloy melt to overcome its flow resistance in the MDN,thus producing powders under different MDN inner-diameters.When the MDN inner-diameter was reduced from 4 to 2 mm,the yield of fine powder(<150μm)soared from 54.7%to 94.2%.The surface quality of powders has also been improved when using a smaller inner-diameter MDN.展开更多
A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design ob-jectives were to produce small-particle uniform powders at lower operating pressures by impr...A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design ob-jectives were to produce small-particle uniform powders at lower operating pressures by improving the gas inlet and outlet structures and op-timizing structural parameters. A computational fluid flow model was developed to study the flow field characteristics of the designed atom-izer. Simulation results show that the maximum gas velocity in the atomization zone can reach 440 m&#183;s-1;this value is independent of the atomization gas pressure P0 when P0〉0.7 MPa. When P0=1.1 MPa, the aspiration pressure at the tip of the delivery tube reaches a mini-mum, indicating that the atomizer can attain the best atomization efficiency at a relatively low atomization pressure. In addition, atomization experiments with pure tin at P0=1.0 MPa and with 7055Al alloy at P0=0.8 and 0.4 MPa were conducted to evaluate the atomization capa-bility of the designed atomizer. Nearly spherical powders were obtained with the mass median diameters of 28.6, 43.4, and 63.5μm, respec-tively. Compared with commonly used atomizers, the designed Laval-type atomizer has a better low-pressure gas atomization capability.展开更多
The paper aims at modeling and simulating the atomization process of the close-coupled ring-hole nozzle in vacuum induction gas atomization(VIGA)for metallic powder production.First of all,the primary atomization of t...The paper aims at modeling and simulating the atomization process of the close-coupled ring-hole nozzle in vacuum induction gas atomization(VIGA)for metallic powder production.First of all,the primary atomization of the ring-hole nozzle is simulated by the volume of fluid(VOF)coupled large eddy simulation(LES)model.To simulate the secondary atomization process,we use the method of selecting the droplet sub-model and the VOF model.The results show that the ring-hole nozzle forms a gas recirculation zone at the bottom of the delivery tube,which is the main reason for the formation of an annular liquid film during the primary atomization.In addition,the primary atomization process of the ring-hole nozzle consists of three stages:the formation of the serrated liquid film tip,the appearance and shedding of the ligaments,and the fragmentation of ligaments.At the same time,the primary atomization mainly forms spherical droplets and long droplets,but only the long droplets can be reserved and proceed to the secondary atomization.Moreover,increasing the number of ring holes from 18 to 30,the mass median diameter(MMD,d_(50))of the primary atomized droplets decreases first and then increases,which is mainly due to the change of the thickness of the melt film.Moreover,the secondary atomization of the ring-hole nozzles is mainly in bag breakup mode and multimode breakup model,and bag breakup will result in the formation of hollow powder,which can be avoided by increasing the gas velocity.展开更多
The instability theory of fluid flow is applied in gas atomization and the results show that the instability of interfacial wave is the main cause of gas atomization. The size of the droplets and its change with param...The instability theory of fluid flow is applied in gas atomization and the results show that the instability of interfacial wave is the main cause of gas atomization. The size of the droplets and its change with parameters are also studied, the results are compatible with the experiments.展开更多
A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the all...A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.展开更多
17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, sc...17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 prn. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size.展开更多
The crucible-free electrode induction melting gas atomization(EIGA) technology is an advanced technology for preparing ultra-clean nickel-based superalloy powders. One of the key issues for fabricating powders with ...The crucible-free electrode induction melting gas atomization(EIGA) technology is an advanced technology for preparing ultra-clean nickel-based superalloy powders. One of the key issues for fabricating powders with high quality and yield is the consecutive induction melting of a superalloy electrode. The coupling of a superalloy electrode and coil,frequency, output power, and heat conduction are investigated to improve the controllable electrode induction melting process. Numerical simulation results show that when the coil frequency is 400 kHz, the output power is 100 kW, superalloy liquid flow with a diameter of about 5 mm is not consecutive. When the coil frequency is reduced to 40 kHz, the output power is 120 kW, superalloy liquid flow is consecutive, and its diameter is about 7 mm.展开更多
Gas-atomized pure metal or alloy powders are widely used as raw material in the preparation of high performance materials by powder metallurgy route(compaction and sintering). However, cold compactibility of gas-ato...Gas-atomized pure metal or alloy powders are widely used as raw material in the preparation of high performance materials by powder metallurgy route(compaction and sintering). However, cold compactibility of gas-atomized Al-Si alloy powder is inhibited due to the high strength as a result of the refined Si phases and the supersaturated Al matrix. The effect of annealing on improving the compactibility of Al-Si alloy powder was studied. The densification was investigated by the HECKEL compaction equation in terms of deformation capacity. Moreover, the microstructures and bending fracture surfaces of the green compacts were examined to clarify the densification behavior. The results show that a maximum relative density of 96.1% is obtained when the powder is annealed at 400 °C. The deformation capacity is significantly improved by annealing treatment due to the softening of Al matrix, precipitation of supersaturated Si phases, dissolution of needle-like eutectic phase, and spheroidization of Si phases.展开更多
2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu mat...2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size.The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34μm and 14μm,respectively.Compared with pure Cu droplets,the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation.With decreasing powder size,the extent of the TiB_(2) particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.展开更多
Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at ...Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.展开更多
The resonant behaviors of an ultra-sonic gas atomization nozzle with a zero mass-flux jet actuator were numerically investigated with FLUENT software by using a double precision unsteady two-dimensional pressure-based...The resonant behaviors of an ultra-sonic gas atomization nozzle with a zero mass-flux jet actuator were numerically investigated with FLUENT software by using a double precision unsteady two-dimensional pressure-based solver. The Spalart-Allmaras turbulence model was adopted in the simulations. Numerical results indicated that the oscillation properties of the gas efflux were effectively improved. Several resonatory frequencies corresponding to different vibration modes of gas were distinguished in the nozzle. With the changing of nozzle geometric parameters, different characters among those modes were elucidated by analyzing the propagations of pressure waves.展开更多
Al-20Sn-1Cu powders were prepared by gas atomization in an argon atmosphere with atomizing pressures of 1.1 and 1.6 MPa. The characteristics of the powders are determined by means of dry sieving, scanning electron mic...Al-20Sn-1Cu powders were prepared by gas atomization in an argon atmosphere with atomizing pressures of 1.1 and 1.6 MPa. The characteristics of the powders are determined by means of dry sieving, scanning electron microscopy (SEM), optical microscopy (OM), and X-ray diffractometry (XRD). The results show that the powders exhibit a bimodal size distribution and a higher gas pressure results in a broad size distribution. All particles in both cases are spherical or nearly spherical and satellites form on the surface of coarse particles. Dendritic and cellular structures coexist in the particle. With decreasing particle diameter, the secondary dendrite arm spacing (SDAS) decreases and the cooling rate increases. The particles processed under high gas atomization pressure (1.6 MPa) exhibit a lower SDAS value and a higher cooling rate than those of the same size under low gas atomization pressure (1.1 MPa). The XRD results show that the Sn content increases with decreasing particle size.展开更多
In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational flu...In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.展开更多
The gas flow in the Hartmann resonance tube is numerically investigated by the finite volume method based on the Roe solver. The oscillation of the flow is studied with the presence of a needle actuator set along the ...The gas flow in the Hartmann resonance tube is numerically investigated by the finite volume method based on the Roe solver. The oscillation of the flow is studied with the presence of a needle actuator set along the nozzle axis. Numerical results agree well with the theoretical and experimental results available. Numerical results indicate that the resonance mode of the resonance tube will switch by means of removing or adding the actuator. The gas flow in the ultrasonic gas atomization (USGA) nozzle is also studied by the same numerical methods. Oscillation caused by the Hartmann resonance tube structure, coupled with a secondary resonator, in the USGA nozzle is investigated. Effects of the variation of parameters on the oscillation are studied. The mechanism of the transition of subsonic flow to supersonic flow in the USGA nozzle is also discussed based on numerical results.展开更多
In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic g...In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also inves- tigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental re- suits showed that four major types ofmicrostructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simu- lated results and the available experimental data are in good agreement.展开更多
Microstructure, thermodynamics and electrochemicalproperties of novel RE (NiAlCu)x(x= 4.5, 4.9, 5.6 ) microcrystalline hydrogen-storage alloy powder prepared by gas atomization wasinvestigated. It indicates that alloy...Microstructure, thermodynamics and electrochemicalproperties of novel RE (NiAlCu)x(x= 4.5, 4.9, 5.6 ) microcrystalline hydrogen-storage alloy powder prepared by gas atomization wasinvestigated. It indicates that alloyparticles show relatively regularspherical. Microstructure is composed of the AB5 matrix phase andeutectic double-phase structure withthe AB5 phase and Ni3Al along grainboundaries when x = 5. 6, there is acoexistent structure consisting ofAB5 phase and eutectic doublephase with AB3 and AB phases along grain boundaries at x= 4.5.When x is increased to 4.9, themixed structures are composed ofAB5 and a few AB phases in discontinuous network distribution. Theelectrochemical capacity of alloy is210~300 mAh·g-1, and the activated periods are only 1~3 times.lt seems to be ascribed to the appearance of a great number of freshsurfaces within powder particles resulting from the as-quenched microcrack along the interphase boundaries within particles propagatinggradually in the process of hydrogen-absorption-and dissociation dueto the intrinsic double-phase structure.展开更多
Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,...Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.展开更多
The fine structure of hydrogen storage alloy powders MiNi4.3-xCoxMr0.4AI0.3(x=0.75, 0.45, 0.10; Ml: La-rich misch metal) prepared by rapidly solidifying gas atomization was investigated using a Rietveld analysis metho...The fine structure of hydrogen storage alloy powders MiNi4.3-xCoxMr0.4AI0.3(x=0.75, 0.45, 0.10; Ml: La-rich misch metal) prepared by rapidly solidifying gas atomization was investigated using a Rietveld analysis method. Two sets of CaCu5-type crystal constants were observed in the studied alloys and one set was larger than the other. With decreasing powder radius the solidification rate of powder increased, and so did the percentage of a particle part with larger crystal constants. The reason why there were two sets of crystal constants might be the difference of solidification rate between the outside and inside of a particle.展开更多
基金Project(51627805) supported by the National Natural Science Foundation of ChinaProject(2015A030312003) supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Projects(2014B010129003,2015B020238008,2016B090931006,2017B090901025) supported by the Science and Technology Research Department of Guangdong Province,ChinaProject(201604016049) supported by the Science and Technology Bureau of Guangzhou City,China
文摘A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts of bluntness and outgrowth were introduced to analyze powder sphericity and satellite index quantitatively.The results showed that the median diameters of all atomized powders ranged from 25 to 33μm.The highest yield rate(72.13%)of fine powder(<50μm)was obtained at a superheat of 350 K.The powder size decreased with increasing melt superheat but increased with increasing delivery tube diameter.Powders with bluntness values between 96%and 98%accounted for over 60%.The outgrowth values demonstrated that 70%-85%of all powders did not contain satellite particles,with few powders adhered two or three particles.Not only Al and Si phases were present but also a metastable Al9Si phase was detected.
基金Project(51471035)supported by the National Natural Science Foundation of China
文摘The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×10^4 to 1.11×10^6 K/s.
基金the National Natural Science Foundation of China(No.52074157)Shenzhen Science and Technology Innovation Com-mission,China(Nos.JSGG20180508152608855,KQTD20170328154443162)Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials,China(No.ZDSYS201703031748354).
文摘Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)during gas atomization(GA)process.The experimental validation indicated that the numerical models could give a reasonable prediction on the melt flow process in the MDN.With the decrease of the MDN inner-diameter,the melt flow resistance increased for both molten aluminum and iron,especially achieving an order of 10^(2) kPa in the case of the MDN inner-diameter≤1 mm.Based on the conventional GA process,the positive pressure was imposed on the viscous aluminum alloy melt to overcome its flow resistance in the MDN,thus producing powders under different MDN inner-diameters.When the MDN inner-diameter was reduced from 4 to 2 mm,the yield of fine powder(<150μm)soared from 54.7%to 94.2%.The surface quality of powders has also been improved when using a smaller inner-diameter MDN.
文摘A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design ob-jectives were to produce small-particle uniform powders at lower operating pressures by improving the gas inlet and outlet structures and op-timizing structural parameters. A computational fluid flow model was developed to study the flow field characteristics of the designed atom-izer. Simulation results show that the maximum gas velocity in the atomization zone can reach 440 m&#183;s-1;this value is independent of the atomization gas pressure P0 when P0〉0.7 MPa. When P0=1.1 MPa, the aspiration pressure at the tip of the delivery tube reaches a mini-mum, indicating that the atomizer can attain the best atomization efficiency at a relatively low atomization pressure. In addition, atomization experiments with pure tin at P0=1.0 MPa and with 7055Al alloy at P0=0.8 and 0.4 MPa were conducted to evaluate the atomization capa-bility of the designed atomizer. Nearly spherical powders were obtained with the mass median diameters of 28.6, 43.4, and 63.5μm, respec-tively. Compared with commonly used atomizers, the designed Laval-type atomizer has a better low-pressure gas atomization capability.
基金the National Natural Science Foundation of China(Grant No.51975240)the Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment(Grant No.SKL2019006).
文摘The paper aims at modeling and simulating the atomization process of the close-coupled ring-hole nozzle in vacuum induction gas atomization(VIGA)for metallic powder production.First of all,the primary atomization of the ring-hole nozzle is simulated by the volume of fluid(VOF)coupled large eddy simulation(LES)model.To simulate the secondary atomization process,we use the method of selecting the droplet sub-model and the VOF model.The results show that the ring-hole nozzle forms a gas recirculation zone at the bottom of the delivery tube,which is the main reason for the formation of an annular liquid film during the primary atomization.In addition,the primary atomization process of the ring-hole nozzle consists of three stages:the formation of the serrated liquid film tip,the appearance and shedding of the ligaments,and the fragmentation of ligaments.At the same time,the primary atomization mainly forms spherical droplets and long droplets,but only the long droplets can be reserved and proceed to the secondary atomization.Moreover,increasing the number of ring holes from 18 to 30,the mass median diameter(MMD,d_(50))of the primary atomized droplets decreases first and then increases,which is mainly due to the change of the thickness of the melt film.Moreover,the secondary atomization of the ring-hole nozzles is mainly in bag breakup mode and multimode breakup model,and bag breakup will result in the formation of hollow powder,which can be avoided by increasing the gas velocity.
文摘The instability theory of fluid flow is applied in gas atomization and the results show that the instability of interfacial wave is the main cause of gas atomization. The size of the droplets and its change with parameters are also studied, the results are compatible with the experiments.
基金This work has been supported by the Flu,tda~ion Of harbin institute of Technology for Out standing YOungScientists (No. 1832).
文摘A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.
基金financially supported by the National High-Tech Research and Development Program of China (No. 2009AA033901)the National Natural Science Foundation of China (No. 51004019)
文摘17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 prn. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size.
文摘The crucible-free electrode induction melting gas atomization(EIGA) technology is an advanced technology for preparing ultra-clean nickel-based superalloy powders. One of the key issues for fabricating powders with high quality and yield is the consecutive induction melting of a superalloy electrode. The coupling of a superalloy electrode and coil,frequency, output power, and heat conduction are investigated to improve the controllable electrode induction melting process. Numerical simulation results show that when the coil frequency is 400 kHz, the output power is 100 kW, superalloy liquid flow with a diameter of about 5 mm is not consecutive. When the coil frequency is reduced to 40 kHz, the output power is 120 kW, superalloy liquid flow is consecutive, and its diameter is about 7 mm.
基金Project(CXZZ20140506150310438) supported by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261) supported by the Science and Technology Program of Hunan Province,China
文摘Gas-atomized pure metal or alloy powders are widely used as raw material in the preparation of high performance materials by powder metallurgy route(compaction and sintering). However, cold compactibility of gas-atomized Al-Si alloy powder is inhibited due to the high strength as a result of the refined Si phases and the supersaturated Al matrix. The effect of annealing on improving the compactibility of Al-Si alloy powder was studied. The densification was investigated by the HECKEL compaction equation in terms of deformation capacity. Moreover, the microstructures and bending fracture surfaces of the green compacts were examined to clarify the densification behavior. The results show that a maximum relative density of 96.1% is obtained when the powder is annealed at 400 °C. The deformation capacity is significantly improved by annealing treatment due to the softening of Al matrix, precipitation of supersaturated Si phases, dissolution of needle-like eutectic phase, and spheroidization of Si phases.
基金Funded by the National Natural Science Foundation of China(Nos.U1502274 and 51834009)。
文摘2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size.The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34μm and 14μm,respectively.Compared with pure Cu droplets,the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation.With decreasing powder size,the extent of the TiB_(2) particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.
文摘Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.
基金supported by the National Natural Science Foundation of China (Grant Nos.10772107, 10702038)the Shanghai Municipal Key Projects on Basic Research (Grant No.08JC1409800)+1 种基金the Innovation Project of Shanghai Municipal Education Commission (Grant No.08YZ10)the Shanghai Municipal Science and Technology Commission (Grant No.09DZ1141502)
文摘The resonant behaviors of an ultra-sonic gas atomization nozzle with a zero mass-flux jet actuator were numerically investigated with FLUENT software by using a double precision unsteady two-dimensional pressure-based solver. The Spalart-Allmaras turbulence model was adopted in the simulations. Numerical results indicated that the oscillation properties of the gas efflux were effectively improved. Several resonatory frequencies corresponding to different vibration modes of gas were distinguished in the nozzle. With the changing of nozzle geometric parameters, different characters among those modes were elucidated by analyzing the propagations of pressure waves.
基金the Major State Ba-sic Research Development Program of China (Nos. 2006CB605203 and 2006CB605204)
文摘Al-20Sn-1Cu powders were prepared by gas atomization in an argon atmosphere with atomizing pressures of 1.1 and 1.6 MPa. The characteristics of the powders are determined by means of dry sieving, scanning electron microscopy (SEM), optical microscopy (OM), and X-ray diffractometry (XRD). The results show that the powders exhibit a bimodal size distribution and a higher gas pressure results in a broad size distribution. All particles in both cases are spherical or nearly spherical and satellites form on the surface of coarse particles. Dendritic and cellular structures coexist in the particle. With decreasing particle diameter, the secondary dendrite arm spacing (SDAS) decreases and the cooling rate increases. The particles processed under high gas atomization pressure (1.6 MPa) exhibit a lower SDAS value and a higher cooling rate than those of the same size under low gas atomization pressure (1.1 MPa). The XRD results show that the Sn content increases with decreasing particle size.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Simulation and Test of the Flow Field of Gas Atomization Nozzle (No. 1001-KFA19184)。
文摘In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.
文摘The gas flow in the Hartmann resonance tube is numerically investigated by the finite volume method based on the Roe solver. The oscillation of the flow is studied with the presence of a needle actuator set along the nozzle axis. Numerical results agree well with the theoretical and experimental results available. Numerical results indicate that the resonance mode of the resonance tube will switch by means of removing or adding the actuator. The gas flow in the ultrasonic gas atomization (USGA) nozzle is also studied by the same numerical methods. Oscillation caused by the Hartmann resonance tube structure, coupled with a secondary resonator, in the USGA nozzle is investigated. Effects of the variation of parameters on the oscillation are studied. The mechanism of the transition of subsonic flow to supersonic flow in the USGA nozzle is also discussed based on numerical results.
基金the National Basic Research Program of China (No. 2011CB012902) for their continuing support to this research
文摘In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also inves- tigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental re- suits showed that four major types ofmicrostructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simu- lated results and the available experimental data are in good agreement.
文摘Microstructure, thermodynamics and electrochemicalproperties of novel RE (NiAlCu)x(x= 4.5, 4.9, 5.6 ) microcrystalline hydrogen-storage alloy powder prepared by gas atomization wasinvestigated. It indicates that alloyparticles show relatively regularspherical. Microstructure is composed of the AB5 matrix phase andeutectic double-phase structure withthe AB5 phase and Ni3Al along grainboundaries when x = 5. 6, there is acoexistent structure consisting ofAB5 phase and eutectic doublephase with AB3 and AB phases along grain boundaries at x= 4.5.When x is increased to 4.9, themixed structures are composed ofAB5 and a few AB phases in discontinuous network distribution. Theelectrochemical capacity of alloy is210~300 mAh·g-1, and the activated periods are only 1~3 times.lt seems to be ascribed to the appearance of a great number of freshsurfaces within powder particles resulting from the as-quenched microcrack along the interphase boundaries within particles propagatinggradually in the process of hydrogen-absorption-and dissociation dueto the intrinsic double-phase structure.
基金Project(18JS060) supported by the Shaanxi Key Laboratory of Nano-materials and Technology,ChinaProject(2018JQ5087) supported by Natural Science Basic Research Plan of Shaanxi Province,China。
文摘Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.
文摘The fine structure of hydrogen storage alloy powders MiNi4.3-xCoxMr0.4AI0.3(x=0.75, 0.45, 0.10; Ml: La-rich misch metal) prepared by rapidly solidifying gas atomization was investigated using a Rietveld analysis method. Two sets of CaCu5-type crystal constants were observed in the studied alloys and one set was larger than the other. With decreasing powder radius the solidification rate of powder increased, and so did the percentage of a particle part with larger crystal constants. The reason why there were two sets of crystal constants might be the difference of solidification rate between the outside and inside of a particle.