The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be consid...The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be considered have increased significantly, and an efficient gate utilizationhas received considerable attention. For overcoming the shortcomings of previous gate assignmentapproaches, this paper presents a partial parallel gate assignment approach, by which more factorsconcerning aircraft and gates can be collsidered at the same time. This paper also presents themethod of using a knowledge-based system combined with a mathematical programming method forgetting an optimized feasible assignment solution. By this way, it is more easily to get the solutionthat satisfies both the static and dynamic situations,and thus it may adapt well to meet the needsof actual use to rea-time operations. An experimental prototype has been implemented, and a casestudy is presented at the end of the paper.展开更多
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro...To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.展开更多
The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented i...The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented in this paper.The results illustrate that thedevice can be used to store the analog weights for the neural networks,and the method that thestored value is adjusted continuously to approach to a given analog values is a rather practicalmethod for storing weights of neural networks.展开更多
A polysilicon-based organic nonvolatile floating-gate memory device with a bottom-gate top-contact configuration is investigated,in which polysilicon is sandwiched between oxide layers as a floating gate.Simulations f...A polysilicon-based organic nonvolatile floating-gate memory device with a bottom-gate top-contact configuration is investigated,in which polysilicon is sandwiched between oxide layers as a floating gate.Simulations for the electrical characteristics of the polysilicon floating gate-based memory device are performed.The shifted transfer characteristics and corresponding charge trapping mechanisms during programing and erasing(P/E) operations at various P/E voltages are discussed.The simulated results show that present memory exhibits a large memory window of 57.5 V,and a high read current on/off ratio of ≈ 10~3.Compared with the reported experimental results,these simulated results indicate that the polysilicon floating gate based memory device demonstrates remarkable memory effects,which shows great promise in device designing and practical application.展开更多
This paper employs a new second-order cone (SOC) model as the uncertainty set to capture non-Gaussian local variations. Then using robust gate sizing as an example, we describe the detailed procedures of robust design...This paper employs a new second-order cone (SOC) model as the uncertainty set to capture non-Gaussian local variations. Then using robust gate sizing as an example, we describe the detailed procedures of robust design with a budget of uncertainty. For a pre-selected probability level of yield protection, this robust method translates uncertainty budgeting problems into regular robust optimization problems. More importantly, under the assumption of non-Gaussian distributions, we show that within-die variations will lead to varying sizes of uncertainty sets at different nominal values. By using this new model of uncertainty estimation, the robust gate sizing problem can be formulated as a Geometric Program (GP) and therefore efficiently solved.展开更多
文摘The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be considered have increased significantly, and an efficient gate utilizationhas received considerable attention. For overcoming the shortcomings of previous gate assignmentapproaches, this paper presents a partial parallel gate assignment approach, by which more factorsconcerning aircraft and gates can be collsidered at the same time. This paper also presents themethod of using a knowledge-based system combined with a mathematical programming method forgetting an optimized feasible assignment solution. By this way, it is more easily to get the solutionthat satisfies both the static and dynamic situations,and thus it may adapt well to meet the needsof actual use to rea-time operations. An experimental prototype has been implemented, and a casestudy is presented at the end of the paper.
基金Supported by the National Natural Science Foundation of China(71103034)the Natural Science Foundation of Jiangsu Province(bk2011084)
文摘To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.
文摘The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented in this paper.The results illustrate that thedevice can be used to store the analog weights for the neural networks,and the method that thestored value is adjusted continuously to approach to a given analog values is a rather practicalmethod for storing weights of neural networks.
文摘A polysilicon-based organic nonvolatile floating-gate memory device with a bottom-gate top-contact configuration is investigated,in which polysilicon is sandwiched between oxide layers as a floating gate.Simulations for the electrical characteristics of the polysilicon floating gate-based memory device are performed.The shifted transfer characteristics and corresponding charge trapping mechanisms during programing and erasing(P/E) operations at various P/E voltages are discussed.The simulated results show that present memory exhibits a large memory window of 57.5 V,and a high read current on/off ratio of ≈ 10~3.Compared with the reported experimental results,these simulated results indicate that the polysilicon floating gate based memory device demonstrates remarkable memory effects,which shows great promise in device designing and practical application.
文摘This paper employs a new second-order cone (SOC) model as the uncertainty set to capture non-Gaussian local variations. Then using robust gate sizing as an example, we describe the detailed procedures of robust design with a budget of uncertainty. For a pre-selected probability level of yield protection, this robust method translates uncertainty budgeting problems into regular robust optimization problems. More importantly, under the assumption of non-Gaussian distributions, we show that within-die variations will lead to varying sizes of uncertainty sets at different nominal values. By using this new model of uncertainty estimation, the robust gate sizing problem can be formulated as a Geometric Program (GP) and therefore efficiently solved.