Shenfu Coal was extracted with hot pure water and slurry was isolated. The concentrated benzene-soluble fraction (CBSF) was analyzed with GC/MS and four types of organic compounds (OCs) were detected: HACOCs,DTEs,DMDT...Shenfu Coal was extracted with hot pure water and slurry was isolated. The concentrated benzene-soluble fraction (CBSF) was analyzed with GC/MS and four types of organic compounds (OCs) were detected: HACOCs,DTEs,DMDT and LCAs. The amount of benzyl benzoate which is the most abundant OC was calculated by an inter-nal standard method with an indicated amount of BP. The broken hydrogen bonds and ether bonds were responsible for the extraction of OCs from the coal .DTEs,DMDT and LCAs are essentially insoluble in water,whereas they are soluble,probably owing to intermolecular interaction of OCs with HACOCs.展开更多
Ozonolysis products of four lepidopteral pheromone were identified by methane CI-MS.The spectra obtained were notably simpler than those of EI-MS,the peak of molecular ion was normally close to the base peak,and the c...Ozonolysis products of four lepidopteral pheromone were identified by methane CI-MS.The spectra obtained were notably simpler than those of EI-MS,the peak of molecular ion was normally close to the base peak,and the characteristic fragment ions were high in m/z,thereby the interpretation was facilitated.展开更多
Fusain from Tongting (Huaibei, Anhui Province) bituminous (FTTB) coal was fractionally extracted using Soxhlet extractor with CS2. Then the extracts were analyzed with GC/MS. Comparison of experimental data between FT...Fusain from Tongting (Huaibei, Anhui Province) bituminous (FTTB) coal was fractionally extracted using Soxhlet extractor with CS2. Then the extracts were analyzed with GC/MS. Comparison of experimental data between FTTB coal and clarain from Tongting bituminous (CTTB) coal was carried out. The results show that the kinds of small molecule components detected by GC/MS of FTTB are less than those of CTTB. Long-chain alkanes exist mostly in the extracts of fusain. Macromolecular networks are predominant in the FTTB coal mainly composed of inertinite in the coal petrography. The size of micropores in the FTTB coal is relatively small, and the development of micropores is relatively low. Thus the content of aromatic compounds with affinity for micropores is relative low in FTTB, while the content of long-chain alkanes with affinity for macromolecule networks is relatively high. Sub-components in exinite determine the distribution of long-chain alkanes extracted in the last stage. Odd-numbered carbon distribution appears when resin is most in exinite, while high carbon alkane distribution appears when exinite is dominant in cutinite. Small aromatic molecules are firstly packed in micropores, and exist in a free state after micropores are saturated.展开更多
Shenfu coal was extracted with 0S2, n-hexane, benzene sequentially. The extracts were analyzed with GC/MS. It is presented that group seperation of soluble organic compounds in the coal can be achieved by fractionated...Shenfu coal was extracted with 0S2, n-hexane, benzene sequentially. The extracts were analyzed with GC/MS. It is presented that group seperation of soluble organic compounds in the coal can be achieved by fractionated extraction using different solvents. Main components in CS2 soluble fraction from Shenfu coal are alkyl-substituted arenes. Aliphatic hydrocarbons are overwhelmingly predominant in n-hexane-soluble fraction. Dito tricyclic aramatic hydrocarbons are identified in benzene-soluble fraction. The molecular structures detection of 2, 4, 6-trichlorobenzenamine and 3, 3', 4, 4', 5, 5'-hexachloro-1, 1'- biphenyl and 2-chlorocyclohexanol firstly provide information for existence form of chlorine in coal.展开更多
The main objective of this study is to present the chromatograms and mass spectra of aldehydes so that geochemists could easily identify these compounds in sediment samples. Aldehydes are rare compounds found in the s...The main objective of this study is to present the chromatograms and mass spectra of aldehydes so that geochemists could easily identify these compounds in sediment samples. Aldehydes are rare compounds found in the surface environment, particularly in sediments. To date, aldehydes have not been used as environmental proxies. In this study, long-chain aldehydes detected from coral collected from the east coast of Kenya are analyzed by gas chromatography mass spectrometry (GC/MS) using the typical procedure for biomarker analysis. The retention time of the long-chain aldehydes and fatty acid methyl esters slightly overlapped. Hence, the peak corresponding to the aldehyde in the GC chromatogram is buried with that corresponding to the ester, possibly overlooking the aldehyde. After assessing the difference in the retention time between the aldehydes and fatty acids methyl ester, the aldehydes were easily detected using the standard analytical procedure for biomarkers analysis. A molecular ion (M+) with greater than 23 carbon atoms was detected from long-chain aldehydes. The base peak was observed at m/z 82 in the mass spectra of the aldehyde, where characteristic 68 + 14n ions corresponding to even-numbered ions were observed. The M-18 ion, which was formed by the loss of H2O, as well as M-46 or M-84 ions, was characteristic ions observed for long-chain aldehydes of the number of all carbon. The results obtained from this work, in which aldehydes were identified from coral samples, represent a good example of what could be achieved by geochemists when working with sediment samples and using aldehydes as environmental proxies.展开更多
Non-polar capillary columns for GC/MS are widely utilized in the analysis of additives for food contact materials. Though various kinds of non-polar capillary columns are commercially available, the equality of their ...Non-polar capillary columns for GC/MS are widely utilized in the analysis of additives for food contact materials. Though various kinds of non-polar capillary columns are commercially available, the equality of their performance has not been verified. Herein, ninety-six additives for food contact plastics were analyzed using fifteen kinds of columns, and the peak separation, retention times, and peak areas of each additive were compared. The additives, with various chemical properties, comprised forty four plasticizers, twenty lubricants, twenty antioxidants, nine ultraviolet absorbers, and three other compounds. 10 μg.mL-1 test solutions were prepared in acetone, and injected to the GC/MS. The fifteen columns were classified into five categories based on the chromatogram pattern and peak separation. To facilitate comparison of the retention time and detection sensitivity of the columns for the additives, the relative retention time (RRT) and relative peak area (RPA) were calculated by using dibutylphthalate or 4-tert-butylphenylsalicylate as an internal standard. The RRTs of the additives on each column were essentially similar. However, the RRT of the additives which were detected in the later stages differed slightly. Although the RPA of the plasticizers and lubricants were roughly similar, column-to-column differences were observed for certain additives, such as antioxidants and ultraviolet absorbers. Furthermore, certain fatty acids, antioxidants, two plasticizers, and two benzophenone type ultraviolet absorbers were not detected in the chromatograms of two columns.展开更多
This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC)....This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC).This method innovatively combines contour edge tracking with affinity propagation(AP)clustering for peak detection in GC×GC fingerprints,the first in this field.Contour edge tracking signif-icantly reduces false positives caused by“burr”signals,while AP clustering enhances detection accuracy in the face of false negatives.The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin.PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples.Furthermore,this algorithm compares the GC×GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins.The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues.Each sample exhibits unique characteristic components alongside common ones,and vari-ations in content may influence their therapeutic effectiveness.This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional(2D)fingerprint analysis of GC×GC data.展开更多
基金Project 90410018 supported by the National Natural Science Foundation of China.
文摘Shenfu Coal was extracted with hot pure water and slurry was isolated. The concentrated benzene-soluble fraction (CBSF) was analyzed with GC/MS and four types of organic compounds (OCs) were detected: HACOCs,DTEs,DMDT and LCAs. The amount of benzyl benzoate which is the most abundant OC was calculated by an inter-nal standard method with an indicated amount of BP. The broken hydrogen bonds and ether bonds were responsible for the extraction of OCs from the coal .DTEs,DMDT and LCAs are essentially insoluble in water,whereas they are soluble,probably owing to intermolecular interaction of OCs with HACOCs.
文摘Ozonolysis products of four lepidopteral pheromone were identified by methane CI-MS.The spectra obtained were notably simpler than those of EI-MS,the peak of molecular ion was normally close to the base peak,and the characteristic fragment ions were high in m/z,thereby the interpretation was facilitated.
基金Project 50474066 supported by National Natural Science Foundation of China Project B200405 supported by China University of Mining & Technology
文摘Fusain from Tongting (Huaibei, Anhui Province) bituminous (FTTB) coal was fractionally extracted using Soxhlet extractor with CS2. Then the extracts were analyzed with GC/MS. Comparison of experimental data between FTTB coal and clarain from Tongting bituminous (CTTB) coal was carried out. The results show that the kinds of small molecule components detected by GC/MS of FTTB are less than those of CTTB. Long-chain alkanes exist mostly in the extracts of fusain. Macromolecular networks are predominant in the FTTB coal mainly composed of inertinite in the coal petrography. The size of micropores in the FTTB coal is relatively small, and the development of micropores is relatively low. Thus the content of aromatic compounds with affinity for micropores is relative low in FTTB, while the content of long-chain alkanes with affinity for macromolecule networks is relatively high. Sub-components in exinite determine the distribution of long-chain alkanes extracted in the last stage. Odd-numbered carbon distribution appears when resin is most in exinite, while high carbon alkane distribution appears when exinite is dominant in cutinite. Small aromatic molecules are firstly packed in micropores, and exist in a free state after micropores are saturated.
基金the National Natural Science Foundation(20076051)the Special Fund for Major State Basic Research Project(G1999022101)the Research Fund for the Doctoral Program of Higher Education(98029016)
文摘Shenfu coal was extracted with 0S2, n-hexane, benzene sequentially. The extracts were analyzed with GC/MS. It is presented that group seperation of soluble organic compounds in the coal can be achieved by fractionated extraction using different solvents. Main components in CS2 soluble fraction from Shenfu coal are alkyl-substituted arenes. Aliphatic hydrocarbons are overwhelmingly predominant in n-hexane-soluble fraction. Dito tricyclic aramatic hydrocarbons are identified in benzene-soluble fraction. The molecular structures detection of 2, 4, 6-trichlorobenzenamine and 3, 3', 4, 4', 5, 5'-hexachloro-1, 1'- biphenyl and 2-chlorocyclohexanol firstly provide information for existence form of chlorine in coal.
文摘The main objective of this study is to present the chromatograms and mass spectra of aldehydes so that geochemists could easily identify these compounds in sediment samples. Aldehydes are rare compounds found in the surface environment, particularly in sediments. To date, aldehydes have not been used as environmental proxies. In this study, long-chain aldehydes detected from coral collected from the east coast of Kenya are analyzed by gas chromatography mass spectrometry (GC/MS) using the typical procedure for biomarker analysis. The retention time of the long-chain aldehydes and fatty acid methyl esters slightly overlapped. Hence, the peak corresponding to the aldehyde in the GC chromatogram is buried with that corresponding to the ester, possibly overlooking the aldehyde. After assessing the difference in the retention time between the aldehydes and fatty acids methyl ester, the aldehydes were easily detected using the standard analytical procedure for biomarkers analysis. A molecular ion (M+) with greater than 23 carbon atoms was detected from long-chain aldehydes. The base peak was observed at m/z 82 in the mass spectra of the aldehyde, where characteristic 68 + 14n ions corresponding to even-numbered ions were observed. The M-18 ion, which was formed by the loss of H2O, as well as M-46 or M-84 ions, was characteristic ions observed for long-chain aldehydes of the number of all carbon. The results obtained from this work, in which aldehydes were identified from coral samples, represent a good example of what could be achieved by geochemists when working with sediment samples and using aldehydes as environmental proxies.
文摘Non-polar capillary columns for GC/MS are widely utilized in the analysis of additives for food contact materials. Though various kinds of non-polar capillary columns are commercially available, the equality of their performance has not been verified. Herein, ninety-six additives for food contact plastics were analyzed using fifteen kinds of columns, and the peak separation, retention times, and peak areas of each additive were compared. The additives, with various chemical properties, comprised forty four plasticizers, twenty lubricants, twenty antioxidants, nine ultraviolet absorbers, and three other compounds. 10 μg.mL-1 test solutions were prepared in acetone, and injected to the GC/MS. The fifteen columns were classified into five categories based on the chromatogram pattern and peak separation. To facilitate comparison of the retention time and detection sensitivity of the columns for the additives, the relative retention time (RRT) and relative peak area (RPA) were calculated by using dibutylphthalate or 4-tert-butylphenylsalicylate as an internal standard. The RRTs of the additives on each column were essentially similar. However, the RRT of the additives which were detected in the later stages differed slightly. Although the RPA of the plasticizers and lubricants were roughly similar, column-to-column differences were observed for certain additives, such as antioxidants and ultraviolet absorbers. Furthermore, certain fatty acids, antioxidants, two plasticizers, and two benzophenone type ultraviolet absorbers were not detected in the chromatograms of two columns.
基金supported by Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource Utilization,Hunan Province Natural Science Fund,China(Grant Nos.:2020JJ4569,2023JJ60378)Hunan Province College Students'Innovation and Entrepreneurship Training Program,China(Grant Nos.:S202110530044,S202210530048).
文摘This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC).This method innovatively combines contour edge tracking with affinity propagation(AP)clustering for peak detection in GC×GC fingerprints,the first in this field.Contour edge tracking signif-icantly reduces false positives caused by“burr”signals,while AP clustering enhances detection accuracy in the face of false negatives.The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin.PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples.Furthermore,this algorithm compares the GC×GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins.The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues.Each sample exhibits unique characteristic components alongside common ones,and vari-ations in content may influence their therapeutic effectiveness.This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional(2D)fingerprint analysis of GC×GC data.