Tibetans are welt adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene (GCH1, GTP-cyc...Tibetans are welt adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene (GCH1, GTP-cyclohydrolase I), involved in maintaining nitric oxide synthetase (NOS) function and normal blood pressure, that harbors many potentially adaptive variants in Tibetans. We resequenced an 80.8 kb fragment covering the entire gene region of GCH1 in 50 unrelated Tibetans Combined with previously published data, we demonstrated many GCHI variants showing deep divergence between highlander Tibetans and lowlander Han Chinese. Neutrality tests confirmed a signal of positive Darwinian selection on GCH1 in Tibetans. Moreover, association analysis indicated that the Tibetan version of GCH1 was significantly associated with multiple physiological traits in Tibetans, including blood nitric oxide concentration, blood oxygen saturation and hemoglobin concentration. Taken together, we propose that GCH1 plays a role in the genetic adaptation of Tibetans to high altitude hypoxia.展开更多
A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but th...A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but the combustion cannot be sustained when head spark plug applied as the plug tip was set in the gaseous low-velocity zone with thin spray.This is mainly because flame from this zone cannot supply enough ignition energy for the whole chamber.However,reliable ignition and stable combustion can be achieved by body spark plug.As the O/F ratio increases from 2.61 to 3.49,chamber pressure increases from 0.474 to 0.925 MPa and combustion efficiency increases from 57.8%to 95.1%.This is determined by the injector configuration,which cannot produce the sufficiently breakup of the liquid oxygen on the low flow rate case.展开更多
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB13010000)the National Natural Science Foundation of China(91631306 to BS,31671329 to XQ,31460287 to Ou.,31501013 to HZ and 31360032 to CC)+2 种基金the National 973 program(2012CB518202 to TW)the State Key Laboratory of Genetic Resources and Evolution(GREKF15-05,GREKF16-04)the Zhufeng Scholar Program of Tibetan University
文摘Tibetans are welt adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene (GCH1, GTP-cyclohydrolase I), involved in maintaining nitric oxide synthetase (NOS) function and normal blood pressure, that harbors many potentially adaptive variants in Tibetans. We resequenced an 80.8 kb fragment covering the entire gene region of GCH1 in 50 unrelated Tibetans Combined with previously published data, we demonstrated many GCHI variants showing deep divergence between highlander Tibetans and lowlander Han Chinese. Neutrality tests confirmed a signal of positive Darwinian selection on GCH1 in Tibetans. Moreover, association analysis indicated that the Tibetan version of GCH1 was significantly associated with multiple physiological traits in Tibetans, including blood nitric oxide concentration, blood oxygen saturation and hemoglobin concentration. Taken together, we propose that GCH1 plays a role in the genetic adaptation of Tibetans to high altitude hypoxia.
基金Project(613239)supported by the National Basic Research Program of China
文摘A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but the combustion cannot be sustained when head spark plug applied as the plug tip was set in the gaseous low-velocity zone with thin spray.This is mainly because flame from this zone cannot supply enough ignition energy for the whole chamber.However,reliable ignition and stable combustion can be achieved by body spark plug.As the O/F ratio increases from 2.61 to 3.49,chamber pressure increases from 0.474 to 0.925 MPa and combustion efficiency increases from 57.8%to 95.1%.This is determined by the injector configuration,which cannot produce the sufficiently breakup of the liquid oxygen on the low flow rate case.