In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was ...In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was compared. The change of wear mechanisms in laser hardened GCr15 resulted in a distinct difference in wear rates. The results showed that quenched zones not only had sufficient depth of hardening and higher hardness, but had more retained austenite and finer carbides because of a higher degree of carbide dissolution. Laser surface hardened GCr15 steel specimens exhibited superior wear resistance to their conventionally hardened specimens due to the effects of the microstructure hardening, high hardness and toughness. The wear mechanism for both the laser quenched layer and conventionally hardened layer was highly similar, generally involving adhesive, material transfer, wear-induced oxidation and plowing. When conventionally hardened block specimens rubbed against the laser hardened specimens, the surface of conventionally hardened block specimens was polished. The microstructural thermal stability was increased after laser surface treatment.展开更多
Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature...Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination number x in Fe_xCr_(3-x)C and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. The M_S(martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the same M_S when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution of M_S and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.展开更多
The mechanism of inoculation in the case of suspension casting process has been studied through solidification kinetics. The effect of suspension casting process on temperature field, solidification rate, temperature ...The mechanism of inoculation in the case of suspension casting process has been studied through solidification kinetics. The effect of suspension casting process on temperature field, solidification rate, temperature gap of crystallization, effective distribution coefficient of solute and nucleation frequency during solidification process in steel ingot were discussed on the base of experiments. It has been found that the suspension casting process can increase both cooling at and solidification rate of steel ingot, improve the temperature field and solute distribution, narrow the temperature gap of crystallication, and increase the nucleation frequency. Thus, the solidification time can be shorten, the solute can be well distributied, the shrinkage porosity can be reduced and the grain of crystallization can be fined.展开更多
This study characterizes the mechanical properties and volume fractions of the different phases in precision annealed GCr15 steel using nanoindentation technology. Experimental results indicate that the nanoindentatio...This study characterizes the mechanical properties and volume fractions of the different phases in precision annealed GCr15 steel using nanoindentation technology. Experimental results indicate that the nanoindentation hardness of cementite grains is between 14.15 GPa and 17.61 GPa,with a mean value of 15.40 GPa. This hardness is much higher than the hardness of ferrite grains. The nanoindentation hardness of ferrite is between 2.78 GPa and 4.89 GPa, with a mean value of 3.35 GPa. The volume fractions of the different phases were also determined using nanoindentation technology, and the volume fraction of cementite in the steel was identified as 15%.展开更多
Hot deformation behavior of GCr15(ASTM 52100) steel was investigated using single-hit compression tests on Gleeble-1500 simulator at the temperature range of 850-1 100 ℃ and strain rate range of 0.1-10 s-1.The flow...Hot deformation behavior of GCr15(ASTM 52100) steel was investigated using single-hit compression tests on Gleeble-1500 simulator at the temperature range of 850-1 100 ℃ and strain rate range of 0.1-10 s-1.The flow stress constitutive equation of GCr15 steel during hot deformation was determined by stress-strain curves analysis on the basis of the hyperbolic sine equation.And the models of dynamic recrystallization fraction and dynamic recrystallization grain size of GCr15 steel were established by the measured curves and microstructure observation in different experimental conditions.The mean activation energy and the time exponent of dynamic recrystallization kinetics equation in the range of experimental conditions were determined to be 356.2 kJ/mol and 2.12,respectively.Meanwhile,the flow stress model was also established by the method of allocating flow stress curve with three main stress values,the saturation stress,the steady state stress and the stress when strain is 0.1.The flow stress curves predicted by the developed models under different deformation conditions are in good agreements with the measured ones.展开更多
基金Funded By the Natural Science Research Foundation of Department of Education of AnHui Province in China( No.KJ2009A021)
文摘In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was compared. The change of wear mechanisms in laser hardened GCr15 resulted in a distinct difference in wear rates. The results showed that quenched zones not only had sufficient depth of hardening and higher hardness, but had more retained austenite and finer carbides because of a higher degree of carbide dissolution. Laser surface hardened GCr15 steel specimens exhibited superior wear resistance to their conventionally hardened specimens due to the effects of the microstructure hardening, high hardness and toughness. The wear mechanism for both the laser quenched layer and conventionally hardened layer was highly similar, generally involving adhesive, material transfer, wear-induced oxidation and plowing. When conventionally hardened block specimens rubbed against the laser hardened specimens, the surface of conventionally hardened block specimens was polished. The microstructural thermal stability was increased after laser surface treatment.
基金Project(51575414)supported by National Natural Science Foundation of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2015AAA005)supported by the project of Important Science and Technology Innovation Program of Hubei Province,China
文摘Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination number x in Fe_xCr_(3-x)C and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. The M_S(martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the same M_S when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution of M_S and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.
文摘The mechanism of inoculation in the case of suspension casting process has been studied through solidification kinetics. The effect of suspension casting process on temperature field, solidification rate, temperature gap of crystallization, effective distribution coefficient of solute and nucleation frequency during solidification process in steel ingot were discussed on the base of experiments. It has been found that the suspension casting process can increase both cooling at and solidification rate of steel ingot, improve the temperature field and solute distribution, narrow the temperature gap of crystallication, and increase the nucleation frequency. Thus, the solidification time can be shorten, the solute can be well distributied, the shrinkage porosity can be reduced and the grain of crystallization can be fined.
文摘This study characterizes the mechanical properties and volume fractions of the different phases in precision annealed GCr15 steel using nanoindentation technology. Experimental results indicate that the nanoindentation hardness of cementite grains is between 14.15 GPa and 17.61 GPa,with a mean value of 15.40 GPa. This hardness is much higher than the hardness of ferrite grains. The nanoindentation hardness of ferrite is between 2.78 GPa and 4.89 GPa, with a mean value of 3.35 GPa. The volume fractions of the different phases were also determined using nanoindentation technology, and the volume fraction of cementite in the steel was identified as 15%.
基金Item Sponsored by National Project of Scientific and Technical Supporting Program in 11th Five-Year Plan of China(2006BAE03A08,2006BAE03A04)
文摘Hot deformation behavior of GCr15(ASTM 52100) steel was investigated using single-hit compression tests on Gleeble-1500 simulator at the temperature range of 850-1 100 ℃ and strain rate range of 0.1-10 s-1.The flow stress constitutive equation of GCr15 steel during hot deformation was determined by stress-strain curves analysis on the basis of the hyperbolic sine equation.And the models of dynamic recrystallization fraction and dynamic recrystallization grain size of GCr15 steel were established by the measured curves and microstructure observation in different experimental conditions.The mean activation energy and the time exponent of dynamic recrystallization kinetics equation in the range of experimental conditions were determined to be 356.2 kJ/mol and 2.12,respectively.Meanwhile,the flow stress model was also established by the method of allocating flow stress curve with three main stress values,the saturation stress,the steady state stress and the stress when strain is 0.1.The flow stress curves predicted by the developed models under different deformation conditions are in good agreements with the measured ones.