A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative...A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.展开更多
The embryo, cytoplasmic, and maternal heterosis for erucic acid content (EAC) and glucosinolate content (GLS) of rapeseed (Brassica napus L.) were studied by using the genetic models for quantitative traits of s...The embryo, cytoplasmic, and maternal heterosis for erucic acid content (EAC) and glucosinolate content (GLS) of rapeseed (Brassica napus L.) were studied by using the genetic models for quantitative traits of seeds in diploid crops. Eight parents were included in a diallel mating design in two years. It was found that the heterosis of EAC and GLS was simultaneously controlled by genetic main effects and genotype×environment (GE) interaction effects. The general heterosis of most crosses for EAC was significantly positive, while it was not for GLS. The general heterosis was more important for two quality traits of rapeseed because of the low GE interaction heterosis in both years, especially for GLS. Among different genetic systems, significant positive embryo general heterosis and the negative maternal general heterosis were found for EAC and GLS in most hybrid crosses. Some hybrids with significant negative interaction heterosis were detected for either of EAC or GLS. In general, maternal general and interaction heterosis was more important for reducing EAC and GLS of rapeseed.展开更多
基金This work was supported by Chinese National Programs for High Technology Research and Development(973 Program)(No.2004CB117306).
文摘A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.
基金supported by the Technology Office of Zhejiang Province, China (2008C22084)the 151 Program for the Talents of Zhejiang ProvinceFoundation for University Key Teacher by the Ministry of Education of China
文摘The embryo, cytoplasmic, and maternal heterosis for erucic acid content (EAC) and glucosinolate content (GLS) of rapeseed (Brassica napus L.) were studied by using the genetic models for quantitative traits of seeds in diploid crops. Eight parents were included in a diallel mating design in two years. It was found that the heterosis of EAC and GLS was simultaneously controlled by genetic main effects and genotype×environment (GE) interaction effects. The general heterosis of most crosses for EAC was significantly positive, while it was not for GLS. The general heterosis was more important for two quality traits of rapeseed because of the low GE interaction heterosis in both years, especially for GLS. Among different genetic systems, significant positive embryo general heterosis and the negative maternal general heterosis were found for EAC and GLS in most hybrid crosses. Some hybrids with significant negative interaction heterosis were detected for either of EAC or GLS. In general, maternal general and interaction heterosis was more important for reducing EAC and GLS of rapeseed.