期刊文献+
共找到313,927篇文章
< 1 2 250 >
每页显示 20 50 100
Key genes and regulatory networks for diabetic retinopathy based on hypoxia-related genes:a bioinformatics analysis
1
作者 Cai-Han Yu Cai-Xia Wu +3 位作者 Dai Li Lan-Lan Gong Xu-Dong Lyu Jie Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1411-1417,共7页
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024... AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance. 展开更多
关键词 diabetic retinopathy hypoxia-related genes hub genes miRNA-TF-Hub gene drug prediction
下载PDF
Regulatory potential of soil available carbon,nitrogen,and functional genes on N_(2)O emissions in two upland plantation systems
2
作者 Peng Xu Mengdie Jiang +4 位作者 Imran Khan Muhammad Shaaban Hongtao Wu Barthelemy Harerimana Ronggui Hu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2792-2806,共15页
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst... Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations. 展开更多
关键词 upland-rice cultivation N_(2)O emission regulatory factors functional genes
下载PDF
An overview of pigment gland morphogenesis and its regulatory mechanism
3
作者 SUN Yue YANG Ping +5 位作者 HAN Yifei LI Huazu SUN Deli CHEN Jinhong ZHU Shuijin ZHAO Tianlun 《Journal of Cotton Research》 CAS 2024年第2期207-214,共8页
Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a comm... Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait. 展开更多
关键词 Cotton Pigment gland morphogenesis Transcriptional regulation Terpenoids biosynthesis
下载PDF
Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis
4
作者 Zi-Ling Hu Yu-Xuan Wang +4 位作者 Zi-Yue Lin Wen-Shuo Ren Bo Liu Hui Zhao Qiong Qin 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1344-1362,共19页
Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress o... Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD. 展开更多
关键词 NRF2 upstream regulators retinal pigment epithelia age-related macular degeneration oxidative stress
下载PDF
A cluster of mutagenesis revealed an osmotic regulatory role of the OsPIP1 genes in enhancing rice salt tolerance 被引量:1
5
作者 Leyuan Tao Bing Wang +6 位作者 Shichao Xin Wei Li Shengcai Huang Laihua Liu Jing Cui Qianru Zhang Xianguo Cheng 《The Crop Journal》 SCIE CSCD 2023年第4期1204-1217,共14页
Aquaporins play important regulatory roles in improving plant abiotic stress tolerance.To better understand whether the Os PIP1 genes collectively dominate the osmotic regulation in rice under salt stress,a cluster ed... Aquaporins play important regulatory roles in improving plant abiotic stress tolerance.To better understand whether the Os PIP1 genes collectively dominate the osmotic regulation in rice under salt stress,a cluster editing of the Os PIP1;1,Os PIP1;2 and Os PIP1;3 genes in rice was performed by CRISPR/Cas9 system.Sequencing showed that two mutants with Cas9-free,line 14 and line 18 were successfully edited.Briefly,line 14 deleted a single C base in both the Os PIP1;1 and Os PIP1;3 genes,and inserted a single T base in the Os PIP1;2 gene,respectively.While line 18 demonstrated an insertion of a single A base in the Os PIP1;1gene and a single T base in both the Os PIP1;2 and Os PIP1;3 genes,respectively.Multiplex editing of the Os PIP1 genes significantly inhibited photosynthetic rate and accumulation of compatible metabolites,but increased MDA contents and osmotic potentials in the mutants,thus delaying rice growth under salt stress.Functional loss of the Os PIP1 genes obviously suppressed the expressions of the Os PIP1,Os SOS1,Os CIPK24 and Os CBL4 genes,and increased the influxes of Na+and effluxes of K^(+)/H^(+)in the roots,thus accumulating more Na+in rice mutants under salt stress.This study suggests that the Os PIP1 genes are essential modulators collectively contributing to the enhancement of rice salt stress tolerance,and multiplex editing of the Os PIP1 genes provides insight into the osmotic regulation of the PIP genes. 展开更多
关键词 AQUAPORIN Multiplex gene editing CRISPR/Cas9 OsPIP1 genes Rice(Oryza sativa L.) Salt tolerance
下载PDF
Regulatory role of NFAT1 signaling in articular chondrocyteactivities and osteoarthritis pathogenesis
6
作者 MINGCAI ZHANG TANNER CAMPBELL +1 位作者 SPENCER FALCON JINXI WANG 《BIOCELL》 SCIE 2023年第10期2125-2132,共8页
Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness,and deformity. OA is now considered a whole joint disease;however, the breakdown of the articular cartil... Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness,and deformity. OA is now considered a whole joint disease;however, the breakdown of the articular cartilage remains themajor hallmark of the disease. Current treatments targeting OA symptoms have a limited impact on impeding orreversing the OA progression. Understanding the molecular and cellular mechanisms underlying OA development isa critical barrier to progress in OA therapy. Recent studies by the current authors’ group and others have revealedthat the nuclear factor of activated T cell 1 (NFAT1), a member of the NFAT family of transcription factors, regulatesthe expression of many anabolic and catabolic genes in articular chondrocytes of adult mice. Mice lacking NFAT1exhibit normal skeletal development but display OA in both appendicular and spinal facet joints as adults. Thisreview mainly focuses on the recent advances in the regulatory role of NFAT1 transcription factor in the activities ofarticular chondrocytes and its implication in the pathogenesis of OA. 展开更多
关键词 OSTEOARTHRITIS CHONDROCYTE NFAT1 Transcription factor Regulation of gene expression
下载PDF
Regulatory Genes Through Robust-SNR for Binary Classification Within Functional Genomics Experiments
7
作者 Muhammad Hamraz Dost Muhammad Khan +6 位作者 Naz Gul Amjad Ali Zardad Khan Shafiq Ahmad Mejdal Alqahtani Akber Abid Gardezi Muhammad Shafiq 《Computers, Materials & Continua》 SCIE EI 2023年第2期3663-3677,共15页
The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio(SNR).The proposed method utilizes the robust measures of location i.e.,the“Median... The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio(SNR).The proposed method utilizes the robust measures of location i.e.,the“Median”as well as the measures of variation i.e.,“Median absolute deviation(MAD)and Interquartile range(IQR)”in the SNR.By this way,two independent robust signal-to-noise ratios have been proposed.The proposed method selects the most informative genes/features by combining the minimum subset of genes or features obtained via the greedy search approach with top-ranked genes selected through the robust signal-to-noise ratio(RSNR).The results obtained via the proposed method are compared with wellknown gene/feature selection methods on the basis of performance metric i.e.,classification error rate.A total of 5 gene expression datasets have been used in this study.Different subsets of informative genes are selected by the proposed and all the other methods included in the study,and their efficacy in terms of classification is investigated by using the classifier models such as support vector machine(SVM),Random forest(RF)and k-nearest neighbors(k-NN).The results of the analysis reveal that the proposed method(RSNR)produces minimum error rates than all the other competing feature selection methods in majority of the cases.For further assessment of the method,a detailed simulation study is also conducted. 展开更多
关键词 Median absolute deviation(MAD) classification feature selection high dimensional gene expression datasets signal to noise ratio
下载PDF
Mutagenesis reveals that the rice OsMPT3 gene is an important osmotic regulatory factor 被引量:2
8
作者 Shengcai Huang Shichao Xin +6 位作者 Guoqiang Xie Jiao Han Zhonglai Liu Bing Wang Shuqing Zhang Qingyu Wu Xianguo Cheng 《The Crop Journal》 SCIE CAS CSCD 2020年第3期465-479,共15页
Plant mitochondrial phosphate transporters regulate phosphate transport and ATP synthesis. Determining whether they function in abiotic stress response process would shed light on their response to salt stress. We use... Plant mitochondrial phosphate transporters regulate phosphate transport and ATP synthesis. Determining whether they function in abiotic stress response process would shed light on their response to salt stress. We used the CRISPR/Cas9 gene-editing system to mutagenize two mitochondrial phosphate transporters, OsMPT3;1 and OsMPT3;2, to investigate their regulatory roles under salt stress. Two cas9(CRISPR-associated protein9)-free homozygous mutants, mpt33 and mpt30, were confirmed to be stable. Both OsMPT3;1 and OsMPT3;2 were markedly induced by salt stress, and their mutagenesis strongly inhibited growth and development, especially under salt stress. Mutagenesis sharply reduced the accumulation of ATP, phosphate, calcium, soluble sugar, and proline and increased osmotic potential, malondialdehyde, and Na^+ /K^+ ratio under salt stress. Both mutants demonstrate normal growth and development in the presence of ATP, revealing high sensitivity to exogenous ATP under salt stress. The mutants showed lowered rates of Na^+ efflux but also of K^+ and Ca^(2+) influx under salt stress. Mutagenesis of OsMPT3;2 altered the enrichment profiles of differentially expressed genes involved mainly in synthesis of secondary metabolites, metabolism of glycolysis, pyruvate, tricarboxylic acid cycle, in response to salt stress. The mutant displayed significant accumulation differences in 14 metabolites involved in 17 metabolic pathways, and strongly up-regulated the accumulation of glutamine, a precursor in proline synthesis, under salt stress. These findings suggest that the OsMPT3 gene modulates phosphate transport and energy supply for ATP synthesis and triggers changes in accumulation of ions and metabolites participating in osmotic regulation in rice under salt stress, thus increasing rice salt tolerance. This study demonstrates the effective application of CRISPR/Cas9 gene-editing to the investigation of plant functional genes. 展开更多
关键词 MPT ATP CRISPR Mutagenesis reveals that the rice OsMPT3 gene is an important osmotic regulatory factor
下载PDF
Determining Nodulation Regulatory (Rj) Genes of Myanmar Soybean Cultivars and Their Symbiotic Effectiveness with <i>Bradyrhizobium japonicum</i>USDA110
9
作者 Aung Zaw Htwe Yuichi Saeki +1 位作者 Kyi Moe Takeo Yamakawa 《American Journal of Plant Sciences》 2015年第18期2799-2810,共12页
Soybean (Glycine max L.) plays an essential role in human nutrition as a protein source, and in plant nutrition as a N source. The rate of N fixation varies depending on the cultivars and compatibility between the ino... Soybean (Glycine max L.) plays an essential role in human nutrition as a protein source, and in plant nutrition as a N source. The rate of N fixation varies depending on the cultivars and compatibility between the inoculated Rhizobium strain and the host cultivar. Characterizing the nodulation regulatory (Rj) genes is necessary to determine the compatibility of cultivars and Rhizobium strains. Rj genes were previously identified based on inoculation tests and PCR analyses. The six cultivars Yezin-3, Yezin-7, Yezin-11, Shan Seine (Local), Madaya (Local), and Hinthada (Local) were identified as harboring the Rj4 gene. Two cultivars, Yezin-6 and Yezin-8, were classified as non-Rj-gene harboring. Two other cultivars, Yezin-9 and Yezin-10, were identified as Rj3- and Rj2Rj3-gene harboring, respectively. Ours is the first report on Rj3- and Rj2Rj3-gene harboring cultivars in Myanmar. We evaluated Myanmar soybean cultivars for symbiotic effectiveness, relying on the standard strain Bradyrhizobium japonicum USDA110. In our first experiment, the soybean cultivar Yezin-11 (Rj4) showed the highest N fixing potential. Based on their potential for fixing N and nodulation, the top six soybean cultivars were Yezin-11 (Rj4), Yezin-9 (Rj3), Yezin-6 (non-Rj), Yezin-8 (non-Rj), Yezin-3 (Rj4) and Yezin-10 (Rj2Rj3). These cultivars were selected for a second experiment, which revealed that the N fixation, nodulation, and plant growth of Yezin-11 (Rj4) *Corresponding author. A. Z. Htwe et al. 2800 were superior to the other cultivars. We conclude that Yezin-11 (Rj4) is the most efficient cultivar for nodulation and N fixation when inoculated with B. japonicum USDA110. 展开更多
关键词 B. JAPONICUM USDA110 Inoculation Test PCR Analysis NODULATION regulatorY genes (Rj Gene) Symbiotic Effectiveness
下载PDF
Mining the key regulatory genes of chicken inosine 5'-monophosphate metabolism based on time series microarray data 被引量:6
10
作者 Teng Ma Lu Xu +4 位作者 Hongzhi Wang Jing Chen Lu Liu Guobin Chang Guohong Chen 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2015年第3期280-290,共11页
IMP (inosine 5'-monophosphate) is a compound that enhances the flavor of poultry meat. IMP has become a new breeding trait to improve poultry meat quality. We tried to identify several potential regulatory genes, a... IMP (inosine 5'-monophosphate) is a compound that enhances the flavor of poultry meat. IMP has become a new breeding trait to improve poultry meat quality. We tried to identify several potential regulatory genes, and construct their predicted regulatory relationships. Time series gene expression profiles of thigh muscle tissues of Rugao chicken, a famous indigenous breed in China, were performed for analysis of genes that are co-expressed or correlated with the concentration of IMP. We found 15 crucial co-expression genes, which are Hspa2, Pten, Gabpa, Bpi, Mkll, Srf,, Cd34, Hspa4, EtvS, Bmpr2, Gdel, IgfbpS, Cd28, Pecam1 and Gja1, that may directly or indirectly regulate IMP metabolism. Eventually, we computed the correlation coefficient between 19 IMP Genes and 15 CGs (15 co-expression genes), and we identified and constructed a predicted regulation network. In conclusion, variation of IMP concentration was primarily connected with the muscle development process. During this process, 15 CGs were identified that may have significant influence on IMP metabolism. In particular, Bmpr2, Pten and co-expression genes correlated with Entpd8 might play important roles in regulating IMP de novo synthesis, decomposition and salvage synthesis. 展开更多
关键词 CO-EXPRESSION Hub genes IMP metabolism Regulation network
下载PDF
Sex-determining region Y box-containing genes: regulators and biomarkers in gynecological cancers 被引量:4
11
作者 Jiali Hu Ke Li +4 位作者 Zhanghuan Li Chao Gao Fei Guo Yingmei Wang Fengxia Xue 《Cancer Biology & Medicine》 SCIE CAS CSCD 2019年第3期462-474,共13页
Sex-determining region Y box-containing genes are transcription factors with roles in multiple biological processes, including cell differentiation, proliferation, and apoptosis.Sex-determining region Y box-containing... Sex-determining region Y box-containing genes are transcription factors with roles in multiple biological processes, including cell differentiation, proliferation, and apoptosis.Sex-determining region Y box-containing genes have also been shown to act as regulators and biomarkers in the progression of many different cancers, including gynecological cancers such as ovarian, cervical,and endometrial cancer.In this review, we summarize the contrasting regulatory roles of Sex-determining region Y box-containing genes in different gynecological cancers, as promotors with high expression levels or as suppressors with low expression levels.Expression levels of Sex-determining region Y box-containing genes were also identified as biomarkers of clinical features, including International Federation of Gynecology and Obstetrics stage, histopathologic grade together with disease-free survival, and treatment efficacy in patients with gynecological cancers.An understanding of the mechanisms whereby Sex-determining region Y box-containing genes regulate the progression of gynecological cancers will aid in the development of novel diagnostic and therapeutic strategies, while analysis of Sex-determining region Y box-containing expression levels will help to predict the prognosis of patients with gynecological cancers. 展开更多
关键词 Sex-determining region Y box-containing gene GYNECOLOGICAL cancer regulator biomarker clinical feature progression
下载PDF
Regulatory genes controlling neural stem cells differentiation into neurons
12
作者 张丽 顾振伦 秦正红 《Neuroscience Bulletin》 SCIE CAS CSCD 2006年第5期294-300,共7页
The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differen... The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differentiate into mature neurons is critical to achieve the clinical applications of NSCs. At present, molecular mechanisms modulating NSC differentiation are not fully understood. Differentiation of stem cells into neuronal and glial cells involves an array of changes in expression of transcription factors. Transcription factors then trigger the expression of a variety of central nervous system (CNS) genes that lead NSCs to differentiate towards different cell types. In this paper, we summarized the recent findings on the gene regulation of NSCs differentiation into neuronal cells. 展开更多
关键词 neural stem cells DIFFERENTIATION gene regulation
下载PDF
Identification of similar transcriptional regulatory mechanisms in multiple cry genes in Bacillus thuringiensis HD12
13
作者 SONG Zhi-ru PENG Qi +3 位作者 SHU Chang-long ZHANG Jie SUN Dong-mei SONG Fu-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第1期135-143,共9页
Bacillus thuringiensis subspecies morrisoni strain HD12, whose genome harbors multiple insecticidal protein-encoding genes, includes eight cry genes, as indicated by genome sequencing. This strain produces crystals th... Bacillus thuringiensis subspecies morrisoni strain HD12, whose genome harbors multiple insecticidal protein-encoding genes, includes eight cry genes, as indicated by genome sequencing. This strain produces crystals that are toxic to lepidopteran species. These crystal inclusions were purified by sucrose gradients and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by liquid chromatography-mass spectrometry, and found to contain five proteins (Cry1Da, Cry1Ae, Cry1Bb, Cry1Fb, and CrylJa). The transcriptional activities of the cry1Da, cry1Ae, cry1Bb, cry1Fb, and cry11Ja promoters indicated that transcription of crylDa is controlled by SigE; however, the other four cry genes were found to be controlled by both SigE and SigK. The activities of the crylJa and crylFb promoters were the strongest among the five genes studied. These promoters were therefore used to direct the expression of the Cry1Ac- and Cry2Ab-encoding genes concurrently in a single strain. Our findings indicate that promoters with the same transcriptional profile may be used to direct the expression of different cry genes in one strain. Our results are expected to be valuable for the construction of strains with efficient expression of multiple cry genes in order to overcome current limitations associated with the application of B. thuringiensis-based insecticides. 展开更多
关键词 Bacillus thuringiensis TRANSCRIPTION cry genes INSECTICIDE
下载PDF
Drought-responsive genes expressed predominantly in root tissues are enriched with homotypic cis-regulatory clusters in promoters of major cereal crops
14
作者 Muhammad Ramzan Khan Imran Khan +2 位作者 Zahra Ibrar Jens Léon Ali Ahmed Naz 《The Crop Journal》 SCIE CAS CSCD 2017年第3期195-206,共12页
The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially ... The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially in crop plants. We performed a meta-analysis of expression divergence of essential drought-inducible genes and analyzed their association with cis-elements in model crops and major cereal crops. Our analysis of42 selected drought-inducible genes revealed that these are expressed primarily in roots,followed by shoot, leaf, and inflorescence tissues, especially in wheat. Quantitative real-time RT-PCR analysis confirmed higher expression of TaDREB2 and TaAQP7 in roots,correlated with extensive rooting and drought-stress tolerance in wheat. A promoter scan up to 2 kb upstream of the translation start site using phylogenetic footprinting revealed708 transcription factor binding sites, including drought response elements(DREs), auxin response elements(Aux REs), MYCREs/MYBREs, ABAREs, and ERD1 in 19 selected genes.Interestingly, these elements were organized into clusters of overlapping transcription factor binding sites known as homotypic clusters(HCTs), which modulate drought physiology in plants. Taken together, these results revealed the expression preeminence of major drought-inducible genes in the root, suggesting its crucial role in drought adaptation. The occurrence of HCTs in drought-inducible genes highlights the putative evolutionary modifications of crop plants in developing drought adaptation. We propose that these DNA motifs can be used as molecular markers for breeding drought-resilient cultivars, particularly in the cereal crops. 展开更多
关键词 Gene expression Promoter DREB cis-regulatory elements Phylogeny DROUGHT adaptation
下载PDF
Comprehensive analysis of the potential pathogenesis of COVID-19 infection and liver cancer
15
作者 Yao Rong Ming-Zheng Tang +2 位作者 Song-Hua Liu Xiao-Feng Li Hui Cai 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期436-457,共22页
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval... BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies. 展开更多
关键词 COVID-19 Liver cancer Differentially expressed genes Hub genes PATHOgenesIS
下载PDF
Regulatory Expression of Peroxisome Proliferator Activated Receptors Genes During Fatty Liver Formation in Geese 被引量:4
16
作者 LUO Jin-biao TIAN Yong +7 位作者 TAO Zheng-rong YUAN Qing-yan LI Guo-qin YUAN Ai-ping ZOU Li-li LU Li-zhi SHEN Jun-da SHI Fang-xiong 《Agricultural Sciences in China》 CSCD 2010年第1期113-120,共8页
In order to investigate the expression pattern of peroxisome proliferator activated receptor (PPAR) genes before and after overfeeding, and estimate the effect of expressed PPAR levels on weights of fatty liver and ... In order to investigate the expression pattern of peroxisome proliferator activated receptor (PPAR) genes before and after overfeeding, and estimate the effect of expressed PPAR levels on weights of fatty liver and abdominal fat in geese, the RT-PCR products of PPAR genes in heart, liver, spleen, lung, kidney, stomach, small intestine, brain, breast muscle, leg muscle, and abdominal fat were determined before and after overfeeding. RT-PCR was used to determine the expression levels of PPAR genes. Quantity one software was used to analyze absorbency, and the expression level of GAPDH gene was used as contrast. Expression levels of PPAR-α were relatively high in most of detected tissues but undetectable in abdominal fat tissue before overfeeding, and the level was evidently increased in lung, appeared in abdominal fat tissue, and reduced in the other tissues after overfeeding. Expressed PPAR-γ levels were relatively high in liver, spleen, lung, small intestine, and abdominal fat, and relatively low in the other tissues before overfeeding. Expressed PPAR-γ levels were enhanced in liver, spleen, lung, stomach, and kidney but decreased in abdominal fat and without obvious changes in the other tissues. Expression patterns of PPAR genes show tissue-specific manner. In addition, expression patterns of PPAR-α are different from PPAR-γ after overfeeding. It might suggest that different functions of PPAR subtypes are responsive to overfeeding. 展开更多
关键词 PPAR gene RT-PCR GOOSE fatty liver
下载PDF
Identification of hub genes associated with Helicobacter pylori infection and type 2 diabetes mellitus:A pilot bioinformatics study 被引量:1
17
作者 Han Chen Guo-Xin Zhang Xiao-Ying Zhou 《World Journal of Diabetes》 SCIE 2024年第2期170-185,共16页
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn... BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM. 展开更多
关键词 Helicobacter pylori Type 2 diabetes mellitus Bioinformatics analysis Differentially expressed genes Hub genes
下载PDF
A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor 被引量:7
18
作者 李永泉 岑沛霖 +2 位作者 陈时飞 吴凡 郑静 《Journal of Zhejiang University Science》 CSCD 2004年第2期173-179,共7页
Two-component genes are kinds of genetic elements involved in regulation of antibiotic production in Streptomyces coelicolor. DNA microarray analysis revealed that ecrA1/A2, which mapped at distant sites from red locu... Two-component genes are kinds of genetic elements involved in regulation of antibiotic production in Streptomyces coelicolor. DNA microarray analysis revealed that ecrA1/A2, which mapped at distant sites from red locus and encode respectively the kinase and regulator, expressed coordinately with genes of Red specific biosynthetic pathway, ecrA1 and ecrA2 gene-disruptive mutants were constructed using homogenotisation by reciprocal double crossover. Fermentation data showed that the undecylprodigiosin (Red) level of production was lower than that of wild-type strain. However, the change of the actinorhodin (Act) production level was not significant compared with wild type. Thus, these experiment results confirmed that the two-component system ecrA 1/A2 was positive regulatory element for red gene cluster. 展开更多
关键词 Streptomyces coelicolor Two-component system Antibiotic gene cluster ecrA1/A2
下载PDF
Identification and Expression Analysis of Regulatory Genes Induced by Near-Ultraviolet Irradiation in <i>Bipolaris oryzae</i> 被引量:1
19
作者 Junichi Kihara Nozomi Tanaka +1 位作者 Makoto Ueno Sakae Arase 《Advances in Microbiology》 2014年第5期233-241,共9页
Bipolaris oryzae is the causal agent of brown leaf spot disease in rice, and its asexual spore (conidium) formation is known to be induced by near-ultraviolet (NUV) irradiation. In order to reveal the photomorphogenic... Bipolaris oryzae is the causal agent of brown leaf spot disease in rice, and its asexual spore (conidium) formation is known to be induced by near-ultraviolet (NUV) irradiation. In order to reveal the photomorphogenic response and to identify new genes upregulated by NUV irradiation, suppression subtractive hybridization (SSH) was carried out in B. oryzae. To confirm the differential gene expression in NUV-irradiated mycelia, quantitative real-time PCR (qRT-PCR) analysis was performed among 301 genes arbitrarily chosen from 1170 cDNA clones. The expression of 46 genes (named NUV01 to NUV46) was found to be significantly enhanced (>4-fold) by NUV irradiation. Sequence analysis revealed that 23 out of the 46 sequences (50%) showed significant matches to known fungal genes. The 46 genes were categorized as either BLR1-dependent or BLR1-independent expression groups using the BLR1-deficient mutant, which presumably lacks the blue/UVA-absorbing photoreceptor. This finding demonstrates that NUV irradiation can induce gene regulation, and that this response may be mediated by both a blue/UVA-absorbing photoreceptor and an as-yet-unidentified photoreceptor in B. oryzae. 展开更多
关键词 BIPOLARIS ORYZAE Gene Expression Near-Ultraviolet (NUV) Quantitative Real-Time PCR Suppression Subtractive Hybridization UVB
下载PDF
Large-scale loss-of-function perturbations reveal a comprehensive epigenetic regulatory network in breast cancer
20
作者 Yumei Wang Haiyan Wang +7 位作者 Wei Shao Yuhui Chen Yu Gui Chao Hu Xiaohong Yi Lijun Huang Shasha Li Dong Wang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第1期83-103,共21页
Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer... Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive.It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods:We employed high-throughput sequencing-based high-throughput screening(HTS^(2))to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators.Then,bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results:Utilizing these gene expression signatures,we classified the epigenetic regulators into five distinct clusters,each characterized by specific functions.We discovered functional similarities between BAZ2B and SETMAR,as well as CLOCK and CBX3.Moreover,we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation.Notably,we constructed an epigenetic regulatory network based on the gene expression signatures,which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions:Our work deciphered the extensive regulation among hundreds of epigenetic regulators.The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment. 展开更多
关键词 Epigenetic regulators breast cancer regulatory network HTS^(2)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部