Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scar...Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.展开更多
Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment mon...Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.展开更多
基金Supported by the International Partnership Program of Chinese Academy of Sciences(No.313GJHZ2022085 FN)the Dragon 5 Cooperation(No.59193)。
文摘Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.
基金The National Natural Science Foundation of China under contract No.41976169.
文摘Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.