期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
Performances of conventional fusion methods evaluated for inland water body observation using GF-1 image 被引量:3
1
作者 Yong Du Xiaoyu Zhang +1 位作者 Zhihua Mao Jianyu Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第1期172-179,共8页
Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly ... Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation. 展开更多
关键词 gf-1 satellite image FUSION methods FUSION evaluation INLAND water body
下载PDF
Pulmonary Edema and Pleural Effusion Detection Using Efficient Net-V1-B4 Architecture and AdamW Optimizer from Chest X-Rays Images
2
作者 Anas AbuKaraki Tawfi Alrawashdeh +4 位作者 Sumaya Abusaleh Malek Zakarya Alksasbeh Bilal Alqudah Khalid Alemerien Hamzah Alshamaseen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1055-1073,共19页
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f... This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively. 展开更多
关键词 image classification decision support system EfficientNet-V1-B4 AdamW optimizer pulmonary edema pleural effusion chest X-rays
下载PDF
Power of SAR Imagery and Machine Learning in Monitoring Ulva prolifera:A Case Study of Sentinel-1 and Random Forest
3
作者 ZHENG Longxiao WU Mengquan +5 位作者 XUE Mingyue WU Hao LIANG Feng LI Xiangpeng HOU Shimin LIU Jiayan 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1134-1143,共10页
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu... Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment. 展开更多
关键词 Ulva prolifera Random Forest Sentinel-1 Synthetic Aperture Radar(SAR)image machine learning remote sensing Google Earth Engine South Yellow Sea of China
下载PDF
Extraction of Planting Information of Winter Wheat in a Province Based on GF-1/WFV Images
4
作者 Li Feng Qin Quan +2 位作者 Wang Hao Hu Xianfeng Zhao Hong 《Meteorological and Environmental Research》 CAS 2018年第4期100-105,共6页
In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a ... In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a multi-spectral wide-spectrum camera (WFV) carried by the GF-1 satellite as well as land use type and field survey data of Shandong Province, the planting area and distribution regions of winter wheat in Shandong Province (the main producing area of winter wheat in China) in 2016 were extracted by decision tree classification method and supervised classification- maximum likelihood classification method, and the accuracy of the classification results was verified based on ground survey data and data published by the statistics bureau. The results showed that the method of taking the GF-1/WFV images as the main source of data, introducing multi-source information into the decision tree and supervised classification models, and then calculating the planting area of winter wheat in the province was feasible. The total accuracy of remote sensing interpretation of winter wheat in Shandong Province in 2016 reached 92.1 %, and Kappa coefficient was 0.806. The planting area of winter wheat extracted based on the remote sensing images in the province was slightly smaller than the area pro-vided by the statistics department, and the extraction accuracy of the area was 93.0%. Research indicates that GF-1/WFV images have great po-tential for development and application in remote sensing monitoring of planting information of crops in a province. 展开更多
关键词 gf-1/WFV images Winter wheat Provincial level Decision tree classification Supervised classification-maximum likelihood method
下载PDF
Inversion of Canopy Nitrogen Content in Apple Orchard Based on GF-1 Satellite Image
5
作者 Shujing Cao Xicun Zhu +5 位作者 Jingling Xiong Ruiyang Yu Xueyuan Bai uanmao Jiang Dongsheng Gao Guijun Yang 《遥感科学(中英文版)》 2019年第1期27-38,共12页
The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the ba... The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the basis of GF-1 satellite multispectral image preprocessing, vegetation index was extracted by band math. The nitrogen sensitive vegetation index of apple canopy was selected by correlation analysis of nitrogen content in apple canopy. The best inversion model for the nitrogen content of apple canopy was selected by establishing the regression model of univariate and multivariate factors. The nitrogen content of the canopy of apple orchard in the study area was inverted in space. The results showed that the 6 vegetation indices of RVI, NDVI, EVI, VARI, NPCI and NRI were better correlated with nitrogen content in the vegetation index based on GF-1 satellite multispectral imaging. The best inversion model of nitrogen content in apple canopy layer is the multivariate stepwise regression (MSR) model: Nc = 35.74– 41.978^*NPCI-10.78^*NDVI. The R^2 and RMSE of the model was 0.69 and 1.07. The spatial inversion of nitrogen content in apple orchard canopy was obtained. This study provided theoretical basis and technical support for large-area rapid monitoring of regional fruit tree nutrients. 展开更多
关键词 gf-1 NITROGEN Content INVERSION APPLE TREE CANOPY
下载PDF
基于GF-1数据的耕地土壤镉(Cd)含量遥感估算方法
6
作者 张龙其 郭云开 +1 位作者 董胜光 刘新良 《测绘通报》 CSCD 北大核心 2024年第3期8-12,94,共6页
本文采用多种光谱变换和回归分析方法探索了使用GF-1卫星影像监测耕地土壤镉(Cd)含量的可行性。首先针对获取的GF-1原始影像数据,在完成预处理及剔除植被信息后进行倒对数、平方根和反正弦平方根变换,生成4套光谱影像;然后分别用采样点... 本文采用多种光谱变换和回归分析方法探索了使用GF-1卫星影像监测耕地土壤镉(Cd)含量的可行性。首先针对获取的GF-1原始影像数据,在完成预处理及剔除植被信息后进行倒对数、平方根和反正弦平方根变换,生成4套光谱影像;然后分别用采样点5 m缓冲区内各套影像光谱统计值与Cd含量进行相关性分析和多种回归分析。选择模型决定系数最高(>95%)的反正弦平方根变换后的自适应重加权回归方法构建的线性回归模型作为遥感估算模型。遥感估算结果在稻田积水、边缘地带等出现了异常估算值;笔者分析原因后应用线性插值的方法得到最终估算结果。相关性分析和建模精度表明该方法是可行的,有望应用于实际土壤质量监测和土地管理中。 展开更多
关键词 耕地土壤 CD含量 gf-1 光谱特征 反演模型
下载PDF
MRI T_2 star mapping、T_1 images与3D DESS融合图在隐匿性膝关节软骨损伤中的应用 被引量:4
7
作者 范伟雄 杨志企 +3 位作者 程凤燕 黄健 于昭 侯文忠 《临床医学工程》 2017年第4期437-439,共3页
目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨... 目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨、胫骨、髌骨关节软骨损伤程度并与关节镜结果对比,计算融合伪彩图诊断软骨损伤的特异性、敏感性及与关节镜诊断结果一致性。结果 T_1 images-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为92.8%、93.0%、0.769,T_2 star mapping-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为91.4%、94.2%、0.787。结论 T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨早期损伤评价上优于关节镜。 展开更多
关键词 膝关节 关节软骨 磁共振成像 T2 star mapping T1 imageS 3D DESS
下载PDF
基于HJ-1星和GF-1号影像融合特征提取冬小麦种植面积 被引量:1
8
作者 张宏 李卫国 +4 位作者 张晓东 卢必慧 张琤琤 李伟 马廷淮 《中国农业科技导报》 CAS CSCD 北大核心 2024年第2期109-119,共11页
为提高基于国产环境与灾害监测预报卫星(HJ-1/CCD)影像大范围提取冬小麦种植面积的精度,以江苏省宿迁市沭阳县为研究区域,对冬小麦拔节期30 m×30 m的HJ-1/CCD多光谱影像和2 m×2 m的高分1号卫星全色影像(GF-1/PMS)进行融合与... 为提高基于国产环境与灾害监测预报卫星(HJ-1/CCD)影像大范围提取冬小麦种植面积的精度,以江苏省宿迁市沭阳县为研究区域,对冬小麦拔节期30 m×30 m的HJ-1/CCD多光谱影像和2 m×2 m的高分1号卫星全色影像(GF-1/PMS)进行融合与面向对象分类研究。将GF-1/PMS全色影像进行8、16和24 m重采样,得到4种空间分辨率(含2 m)的全色影像,分别与HJ-1/CCD多光谱影像利用光谱锐化法(Gram-Schmidt,GS)进行融合。通过对融合影像进行质量评价,选择适合研究区冬小麦种植田块格局的适宜尺度影像。将HJ-1/CCD多光谱影像重采样,得到与适宜尺度融合影像相同尺度的影像,在两景影像中分别选取包含光谱、纹理信息的训练融合影像样本(samples of fused image,SFI)和重采样影像样本(samples of resampling image,SRI),采用面向对象分类方法对适宜尺度融合影像(fused image,FI)和重采样影像(resampling image,RI)进行冬小麦种植面积提取。结果表明,16 m×16 m融合影像的效果优于2 m×2 m、8 m×8 m和24 m×24 m融合影像,其均值、标准差、平均梯度和相关系数分别为161.15、83.01、4.55和0.97。面向对象分类后,SFI对重采样影像RI16m分类的总体精度为92.22%,Kappa系数为0.90。SFI对融合影像FI16m分类的总体精度为94.44%,Kappa系数为0.93。SRI对重采样影像RI16m分类的总体精度为84.44%,Kappa系数为0.80。SFI对融合影像FI16m分类效果最好,说明基于融合影像和融合影像提取样本(SFI)结合的面向对象分类方法能准确提取冬小麦种植面积。另外,重采样影像和融合影像提取样本(SFI)相结合的面向对象分类方法也可较好提取冬小麦种植面积。为利用国产中空间分辨率HJ-1/CCD卫星和高分1号卫星融合影像有效提取大区域冬小麦种植面积信息提供了参考。 展开更多
关键词 HJ-1/CCD卫星影像 gf-1/PMS卫星影像 冬小麦种植面积 特征提取 影像融合 面向对象分类
下载PDF
基于GF-1卫星遥感反演排水河沟水体溶存N_(2)O浓度模型对比研究
9
作者 嵇晶晶 白立影 +3 位作者 佘冬立 管伟 阿力木·阿布来提 潘永春 《水土保持研究》 CSCD 北大核心 2024年第5期257-264,共8页
[目的]探究利用GF-1卫星数据反演水体溶存氧化亚氮(N_(2)O)浓度的可行性,为实现低成本、高效率的水质实时监测提供有效途径。[方法]以宁夏青铜峡灌区第1和第5排水河沟为研究对象,选取与排水河沟水体溶存N_(2)O浓度相关性高的GF-1卫星影... [目的]探究利用GF-1卫星数据反演水体溶存氧化亚氮(N_(2)O)浓度的可行性,为实现低成本、高效率的水质实时监测提供有效途径。[方法]以宁夏青铜峡灌区第1和第5排水河沟为研究对象,选取与排水河沟水体溶存N_(2)O浓度相关性高的GF-1卫星影像波段反射率和水质参数作为自变量,通过最优子集筛选法确定最优自变量组合,分别构建了多元线性回归、BP神经网络和支持向量机模型,对水体溶存N_(2)O浓度进行预测对比。[结果]水温(T)、溶解性有机碳(DOC)等是影响水体溶存N_(2)O浓度的主要因素,同时近红外(NIR)等卫星波段与水体溶存N_(2)O浓度变化趋势显著相关。当自变量包括T,NIR等7个因素时,模型预测效果最佳。在3种模型中,BP神经网络模型验证结果R^(2)为0.64,具有最高预测精度。[结论]GF-1卫星数据以及水质参数与水体溶存N_(2)O浓度存在复杂的相关性关系,且BP神经网络能够实现利用GF-1卫星数据较高精度地反演水体溶存N_(2)O浓度。 展开更多
关键词 N_(2)O浓度 gf-1卫星 反演 机器学习
下载PDF
基于GF-1多光谱影像的河道碍洪物遥感AI识别模型
10
作者 顾祝军 刘斌 +6 位作者 朱骊 丘仕能 任小龙 吴家晟 肖斌 廖广慧 姚露露 《测绘通报》 CSCD 北大核心 2024年第8期84-89,共6页
河道碍洪物是洪涝灾害的重要影响因素,对其进行高效精准监管需引起高度重视。传统的人工巡查难以满足高效精准的应用需求,因此结合人工智能(AI)的遥感技术应用是必经之路。然而诸多的AI模型在遥感应用中的表现尚不清晰,亟待深入探讨。... 河道碍洪物是洪涝灾害的重要影响因素,对其进行高效精准监管需引起高度重视。传统的人工巡查难以满足高效精准的应用需求,因此结合人工智能(AI)的遥感技术应用是必经之路。然而诸多的AI模型在遥感应用中的表现尚不清晰,亟待深入探讨。本文以广西大藤峡库区为例,研究河道碍洪物遥感AI识别模型构建方法。基于GF-1遥感影像,构建碍洪物训练样本集,以ResNet101为核心网络,采用当前主流的6种语义分割模型,包括PSPNet、PAN、MANet、FPN、DeepLabV3+和UNet++,进行碍洪物识别模型训练,进而评估其精度和效率。结果表明:①利用ResNet101作为骨干网络的深度学习模型,在河道碍洪物识别中表现优异,所有模型的F1得分均大于0.70,交并比(IoU)均大于0.58。其中,结合洞卷积和全局池化技术的DeepLabV3+模型的F1得分为0.82,IoU为0.72,体现了其在捕捉上下文信息和微观特征方面的显著优势。②PSPNet在参数量较低的情况下表现出较高的处理效率和精度,每批次能处理8个样本,帧率高达10.49。综上,DeepLabV3+在精确识别和轮廓描绘方面的表现尤为突出,而PSPNet在大规模数据处理上显示出巨大潜力。研究结果可为AI遥感模型构建提供参考,并为河道安全监管提供技术支撑。 展开更多
关键词 gf-1 多光谱 碍洪物 人工智能 识别模型
下载PDF
血清TGF-β1、Nesfatin-1、SFRP5与2型糖尿病胰岛素抵抗关系探究
11
作者 孟祥雨 徐云 +1 位作者 陈雪辉 白立炜 《医学检验与临床》 2024年第2期52-55,共4页
目的:探讨血清转化生长因子-β1(TGF-β1)、Nesfatin-1、分泌型卷曲相关蛋白-5(SFRP5)与2型糖尿病胰岛素抵抗的关系。方法:选取我院2021年4月-2023年4月收治的148例2型糖尿病患者为研究对象,根据稳态模型胰岛素抵抗指数(HOMA-IR)检测结... 目的:探讨血清转化生长因子-β1(TGF-β1)、Nesfatin-1、分泌型卷曲相关蛋白-5(SFRP5)与2型糖尿病胰岛素抵抗的关系。方法:选取我院2021年4月-2023年4月收治的148例2型糖尿病患者为研究对象,根据稳态模型胰岛素抵抗指数(HOMA-IR)检测结果将患者分为轻度胰岛素抵抗组(91例,HOMA-IR<2.5)和中重度胰岛素抵抗组(57例,HOMA-IR≥2.5)。比较两组入院时血清TGF-β1、Nesfatin-1、SFRP5水平,分析入院时血清TGF-β1、Nesfatin-1、SFRP5水平与HOMA-IR的相关性,分析发生中重度胰岛素抵抗的影响因素、联合检测的诊断价值及危险度。结果:入院时,中重度胰岛素抵抗组血清TGF-β1、Nesfatin-1水平高于轻度胰岛素抵抗组,SFRP5水平低于轻度胰岛素抵抗组(P<0.05);入院时,HOMA-IR与血清TGF-β1、Nesfatin-1水平呈正相关,与SFRP5水平呈负相关(P<0.05);入院时,血清TGF-β1、Nesfatin-1、SFRP5水平为2型糖尿病患者发生中重度胰岛素抵抗的影响因素(P<0.05);入院时血清TGF-β1、Nesfatin-1、SFRP5水平联合诊断中重度胰岛素抵抗的AUC为0.808,最佳诊断敏感度为91.23%,特异度为70.33%;入院时血清TGF-β1、Nesfatin-1、SFRP5高水平患者发生中重度胰岛素抵抗的危险度是低水平的3.560、2.134、0.341倍(P<0.05)。结论:血清TGF-β1、Nesfatin-1、SFRP5水平与2型糖尿病胰岛素抵抗密切相关,可作为临床诊断病情的参考依据。 展开更多
关键词 2型糖尿病 胰岛素抵抗 gf-β1 NESFATIN-1 SFRP5
下载PDF
Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery 被引量:9
12
作者 LUO Hong-xia DAI Sheng-pei +4 位作者 LI Mao-fen LIU En-ping ZHENG Qian HU Ying-ying YI Xiao-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第11期2815-2828,共14页
Mango is a commercial crop on Hainan Island,China,that is cultivated to develop the tropical rural economy.The development of accurate and up-to-date maps of the spatial distribution of mango plantations is necessary ... Mango is a commercial crop on Hainan Island,China,that is cultivated to develop the tropical rural economy.The development of accurate and up-to-date maps of the spatial distribution of mango plantations is necessary for agricultural monitoring and decision management by the local government.Pixel-based and object-oriented image analysis methods for mapping mango plantations were compared using two machine learning algorithms(support vector machine(SVM)and Random Forest(RF))based on Chinese high-resolution Gaofen-1(GF-1)imagery in parts of Hainan Island.To assess the importance of different features on classification accuracy,a combined layer of four original bands,32 gray-level co-occurrence(GLCM)texture indices,and 10 vegetation indices were used as input features.Then five different sets of variables(5,10,20,and 30 input variables and all 46 variables)were classified with the two machine learning algorithms at object-based level.Results of the feature optimization suggested that homogeneity and variance were very important variables for distinguishing mango plantations patches.The object-based classifiers could significantly improve overall accuracy between 2–7%when compared to pixel-based classifiers.When there were 5 and 10 input variables,SVM showed higher classification accuracy than RF,and when the input variables exceeded 20,RF showed better performances.After the accuracy achieved saturation points,there were only slightly classification accuracy improvements along with the numbers of feature increases for both of SVM and RF classifiers.The results indicated that GF-1 imagery can be successfully applied to mango plantation mapping in tropical regions,which would provide a useful framework for accurate tropical agriculture land management. 展开更多
关键词 mango plantations GLCM texture SVM RF gf-1
下载PDF
基于GF-1卫星影像的青岛市冬小麦种植面积变化动态监测
13
作者 刘学刚 李峰 王倩 《湖南农业科学》 2024年第7期74-80,86,共8页
为准确获取青岛市冬小麦种植面积及空间分布变化特点,帮助相关部门优化种植结构,合理安排农业生产,研究利用GF-1 WFV卫星遥感影像,选择青岛市2014—2021年冬小麦种植面积遥感提取的最佳时相,采用图像监督分类法提取冬小麦的种植面积,并... 为准确获取青岛市冬小麦种植面积及空间分布变化特点,帮助相关部门优化种植结构,合理安排农业生产,研究利用GF-1 WFV卫星遥感影像,选择青岛市2014—2021年冬小麦种植面积遥感提取的最佳时相,采用图像监督分类法提取冬小麦的种植面积,并通过分类后比较法分析小麦种植面积的动态变化。结果表明:2014—2021年青岛市冬小麦的种植面积为21.7万~24.8万hm^(2),2016年小麦种植面积最大,2020年最小,每年冬小麦种植面积波动范围为0.3万~2.7万hm^(2);遥感提取的种植面积与统计部门提供的种植面积误差较小,误差百分率不超过6.5%;小麦与其他地物类型之间相互转换的差异很小,2014—2021年逐年小麦转为其他地物的面积变化范围为8.0万~10.9万hm^(2),其他地物转为小麦的面积变化范围为7.9万~11.4万hm^(2)。 展开更多
关键词 gf-1卫星影像 青岛市 冬小麦 种植面积 动态监测 监督分类
下载PDF
基于GF-1 WFV的漫湾养殖区悬浮物浓度估算研究
14
作者 徐耀汉 姚月 +4 位作者 邢晓达 闫冬梅 刘慎栋 田东坡 朱晓丹 《中国农村水利水电》 北大核心 2024年第10期73-80,共8页
网箱养殖对区域水环境影响较大,研究网箱养殖区水质参数变化规律对于认知区域性水产养殖对水环境的影响具有较大的现实意义。采用GF-1WFV数据,针对漫湾库区近年成倍增长的网箱养殖区,构建了网箱养殖区总悬浮物浓度反演模型。结果表明:... 网箱养殖对区域水环境影响较大,研究网箱养殖区水质参数变化规律对于认知区域性水产养殖对水环境的影响具有较大的现实意义。采用GF-1WFV数据,针对漫湾库区近年成倍增长的网箱养殖区,构建了网箱养殖区总悬浮物浓度反演模型。结果表明:模型具有较高的精度,反演值与实测值的平均相对误差为9.65%,均方根误差为0.33 mg/L。依据构建的反演模型与卫星影像反演了漫湾网箱养殖区的总悬浮物浓度,分析了库区和不同网箱体位置的总悬浮物浓度变化规律。研究发现,漫湾库区和不同网箱体位置的悬浮物浓度变化规律基本一致,网箱体总悬浮物浓度未因养殖局部“圈定”现象而出现异常,但比库区河流整体悬浮物浓度要小,主要因其总悬浮物浓度变化主要受降水、地表径流、水流流速等影响,网箱养殖会降低其对局部“圈定”区的总悬浮物浓度的影响。研究对漫湾库区和网箱养殖区总悬浮物浓度变化规律认识具有一定参考意义,后续将发展多源遥感数据的水质参数遥感估算模型,用于漫湾网箱养殖区水环境变化规律的认知。 展开更多
关键词 gf-1WFV 总悬浮物浓度 网箱养殖 漫湾库区
下载PDF
A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
15
作者 陈柏池 黄林青 +2 位作者 蔡述庭 熊晓明 张慧 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期266-276,共11页
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ... In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC. 展开更多
关键词 image encryption discrete wavelet transform 1D-chaotic system selective encryption Gaussianization operation
下载PDF
The brightness reversal of submarine sand waves in “HJ-1A/B” CCD sun glitter images 被引量:2
16
作者 HE Xiekai CHEN Ninghua +1 位作者 ZHANG Huaguo GUAN Weibing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期94-99,共6页
The brightness reversal of submarine sand waves appearing in the small satellite constellation for environ- ment and disaster monitoring and forecasting ("HJ- 1A/B") CCD sun glitter images can affect the observati... The brightness reversal of submarine sand waves appearing in the small satellite constellation for environ- ment and disaster monitoring and forecasting ("HJ- 1A/B") CCD sun glitter images can affect the observation and depth inversion of sand wave topography. The simulations of the normalized sun glitter radiance on the submarine sand waves confirm that the reversal would happen at a specific sensor viewing angle, defined as the critical angle. The difference between the calculated critical angle position and the reversal position in the image is about 1', which is excellent in agreement. Both the simulation and actual image show that sand wave crests would be indistinct at the reversal position, which may cause problems when using these sun glitter images to analyze spatial characteristics and migration of sand waves. When using the sun glitter image to obtain the depth inversion, one should take the advantage of image properties of sand waves and choose the location in between the reversal position and the brightest position. It is also necessary to pay attention to the brightness reversal when using "HI-1A/B" CCD images to analyze other oceanic features, such as internal waves, oil slicks, eddies, and ship wakes. 展开更多
关键词 "HJ-1A/B" CCD sun glitter image submarine sand waves brightness reversal Taiwan Banks
下载PDF
磁共振靶向成像检测心肌纤维化大鼠模型中TGF-β1表达的实验研究
17
作者 宋梦星 夏敏 +1 位作者 杨雅雯 马占龙 《磁共振成像》 CAS CSCD 北大核心 2024年第4期120-125,132,共7页
目的构建载转化生长因子-β1(transforming growth factor beta-1,TGF-β1)的超小超顺磁性氧化铁(ultrasmall supperparamagnetic iron oxide,USPIO)靶向探针(USPIO-anti-TGF-β1),探究其表征及磁共振成像(magnetic resonance imaging,M... 目的构建载转化生长因子-β1(transforming growth factor beta-1,TGF-β1)的超小超顺磁性氧化铁(ultrasmall supperparamagnetic iron oxide,USPIO)靶向探针(USPIO-anti-TGF-β1),探究其表征及磁共振成像(magnetic resonance imaging,MRI)靶向检测大鼠心肌纤维化(myocardial fibrosis,MF)模型中TGF-β1表达的可行性。材料与方法选择40只雄性SD大鼠,其中30只采用异丙肾上腺素(isoprenaline,ISO)皮下注射法建立MF模型,另外10只作为健康对照组。通过超声评估大鼠模型建立情况。将造模成功的30只大鼠随机分为实验组、单纯对照组及空白对照组,每组10只;构建USPIO-anti-TGF-β1靶向探针,通过尾静脉注入实验组大鼠体内,单纯对照组及空白对照组分别注入相同剂量的USPIO和生理盐水,并于注射12 h后行T2序列扫描。扫描完成后取大鼠心肌标本行病理学分析。采用独立样本t检验对给药前后的MRI信号强度变化进行分析。结果MRI示实验组给药前心肌信号尚均匀,给药12 h后心内膜下心肌可见信号减低区,二者相对信号强度具有明显差异(0.72±0.12 vs.0.62±0.10,P<0.01);单纯对照组与空白对照组给药前后心肌信号未见明显减低(0.73±0.12 vs.0.71±0.12,P=0.81;0.70±0.13 vs.0.74±0.13,P=0.52)。普鲁士蓝染色显示实验组MF区域与给药后MRI所示信号减低区相符合,免疫组化可见MF区域TGF-β1的阳性表达,普鲁士蓝染色显示心肌细胞中有大量铁颗粒的沉积,证实USPIO-anti-TGF-β1靶向探针的存在。结论通过USPIO-anti-TGF-β1靶向探针进行MRI在体检测MF大鼠模型中TGF-β1的表达可行,为临床监测TGF-β1的表达及抗MF治疗方案的选择和疗效评估提供了实验依据。 展开更多
关键词 转化生长因子-Β1 超小超顺磁性氧化铁纳米颗粒 大鼠心肌纤维化模型 磁共振成像
下载PDF
Population Spatial Distribution Based on Luojia 1-01 Nighttime Light Image:A Case Study of Beijing 被引量:1
18
作者 SUN Lu WANG Jia CHANG Shuping 《Chinese Geographical Science》 SCIE CSCD 2021年第6期966-978,共13页
With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,... With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,the quantity and agglomeration of population distribution can be estimated and visualized.It will provide a basis for a more rational urban planning.This paper takes Beijing as the research area and uses a new Luojia1-01 nighttime light image with high resolution,land use type data,Points of Interest(POI)data,and other data to construct the population spatial index system,establishing the index weight based on the principal component analysis.The comprehensive weight value of population distribution in the study area was then used to calculate the street population distribution of Beijing in 2018.Then the population spatial distribution was visualize using GIS technology.After accuracy assessments by comparing the result with the WorldPop data,the accuracy has reached 0.74.The proposed method was validated as a qualified method to generate population spatial maps.By contrast of local areas,Luojia 1-01 data is more suitable for population distribution estimation than the NPP/VIIRS(Net Primary Productivity/Visible infrared Imaging Radiometer)nighttime light data.More geospatial big data and mathematical models can be combined to create more accurate population maps in the future. 展开更多
关键词 Luojia1-01 nighttime light image principal component analysis points of interest landuse type data population spatial distribution
下载PDF
HY-1C Coastal Zone Imager observations of the suspended sediment content distribution details in the sea area near Hong Kong-Zhuhai-Macao Bridge in China 被引量:1
19
作者 Lina Cai Minrui Zhou +4 位作者 Xiaojun Yan Jianqiang Liu Qiyan Ji Yuxiang Chen Juncheng Zuo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第11期126-138,共13页
The impacts of the Hong Kong-Zhuhai-Macao Bridge(HKZMB)on suspended sediment content(SSC)were analysed in the Zhujiang River Estuary based on data from HY-1C,which was launched in September 2018 in China,carrying Coas... The impacts of the Hong Kong-Zhuhai-Macao Bridge(HKZMB)on suspended sediment content(SSC)were analysed in the Zhujiang River Estuary based on data from HY-1C,which was launched in September 2018 in China,carrying Coastal Zone Imager(CZI)and Chinese Ocean Color and Temperature Scanner on it.A new SSC inversion model was established based on the relationship between in-situ SSC and the remote sensing reflectance in red and near-infrared bands of CZI image.HY-1C satellite data obtained from October to December 2019 were applied to retrieve SSC in the Zhujiang River Estuary.The results show that SSC around the HKZMB is ranging from 20 mg/L to 95 mg/L.SSC change obviously on two sides of the bridge.During flooding and ebbing period,SSC increases obviously downstream of the bridge.SSC difference between upstream and downstream is ranging from 5 mg/L to 20 mg/L.Currents flowing across the HKZMB,the change trend of SSC in most places upstream and downstream is almost the same that SSC downstream of the bridge is higher than SSC upstream.The tidal currents interact with bridge piers,inducing vortexes downstream,leading the sediment to re-suspend downstream of the bridge piers.Other factors,including seafloor topography and wind,can also contribute to the distribution of SSC in the Zhujiang River Estuary. 展开更多
关键词 HY-1C Coastal Zone imager(CZI) Hong Kong-Zhuhai-Macao Bridge suspended sediment content Zhujiang River Estuary
下载PDF
GF-1影像地物最优分割尺度确定方法与评价
20
作者 何燕君 徐军 +1 位作者 宋之光 黄胜敏 《资源导刊》 2024年第8期24-27,共4页
GF-1卫星是中国高分辨率对地观测系统的第一颗卫星,在土地利用变更调查、土地利用动态监测等方面发挥重要作用。在面向对象的信息提取研究中,传统最优分割尺度方法得到的往往是某一个确定数值。以GF-1影像为实验影像,分别利用均值方差... GF-1卫星是中国高分辨率对地观测系统的第一颗卫星,在土地利用变更调查、土地利用动态监测等方面发挥重要作用。在面向对象的信息提取研究中,传统最优分割尺度方法得到的往往是某一个确定数值。以GF-1影像为实验影像,分别利用均值方差法、最大面积法、面积比均值法等方法,对影像常见地物进行最优分割尺度研究,得到最优分割尺度区间,采用eCognition软件ESP工具进行分割结果评价,在这个区间都能得到较好的分割效果。 展开更多
关键词 gf-1 多尺度分割 最优尺度 ECOGNITION ESP
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部