期刊文献+
共找到250篇文章
< 1 2 13 >
每页显示 20 50 100
Image Fusion Based on NSCT and Sparse Representation for Remote Sensing Data
1
作者 N.A.Lawrance T.S.Shiny Angel 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3439-3455,共17页
The practice of integrating images from two or more sensors collected from the same area or object is known as image fusion.The goal is to extract more spatial and spectral information from the resulting fused image t... The practice of integrating images from two or more sensors collected from the same area or object is known as image fusion.The goal is to extract more spatial and spectral information from the resulting fused image than from the component images.The images must be fused to improve the spatial and spectral quality of both panchromatic and multispectral images.This study provides a novel picture fusion technique that employs L0 smoothening Filter,Non-subsampled Contour let Transform(NSCT)and Sparse Representation(SR)followed by the Max absolute rule(MAR).The fusion approach is as follows:first,the multispectral and panchromatic images are divided into lower and higher frequency components using the L0 smoothing filter.Then comes the fusion process,which uses an approach that combines NSCT and SR to fuse low frequency components.Similarly,the Max-absolute fusion rule is used to merge high frequency components.Finally,the final image is obtained through the disintegration of fused low and high frequency data.In terms of correlation coefficient,Entropy,spatial frequency,and fusion mutual information,our method outperforms other methods in terms of image quality enhancement and visual evaluation. 展开更多
关键词 remote sensing multispectral image pan chromatic image L0 smoothening filter non-sub sampled contourlet transform sparse representation
下载PDF
Towards complex scenes: A deep learning-based camouflaged people detection method for snapshot multispectral images
2
作者 Shu Wang Dawei Zeng +3 位作者 Yixuan Xu Gonghan Yang Feng Huang Liqiong Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期269-281,共13页
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,... Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield. 展开更多
关键词 Camouflaged people detection Snapshot multispectral imaging Optimal band selection MS-YOLO Complex remote sensing scenes
下载PDF
Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring 被引量:22
3
作者 ZHOU Qing-bo YU Qiang-yi +2 位作者 LIU Jia WU Wen-bin TANG Hua-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期242-251,共10页
High-resolution satellite data have been playing an important role in agricultural remote sensing monitoring. However, the major data sources of high-resolution images are not owned by China. The cost of large scale u... High-resolution satellite data have been playing an important role in agricultural remote sensing monitoring. However, the major data sources of high-resolution images are not owned by China. The cost of large scale use of high resolution imagery data becomes prohibitive. In pace of the launch of the Chinese "High Resolution Earth Observation Systems", China is able to receive superb high-resolution remotely sensed images (GF series) that equalizes or even surpasses foreign similar satellites in respect of spatial resolution, scanning width and revisit period. This paper provides a perspective of using high resolution remote sensing data from satellite GF-1 for agriculture monitoring. It also assesses the applicability of GF-1 data for agricultural monitoring, and identifies potential applications from regional to national scales. GF-1's high resolution (i.e., 2 m/8 m), high revisit cycle (i.e., 4 days), and its visible and near-infrared (VNIR) spectral bands enable a continuous, efficient and effective agricultural dynamics monitoring. Thus, it has gradually substituted the foreign data sources for mapping crop planting areas, monitoring crop growth, estimating crop yield, monitoring natural disasters, and supporting precision and facility agriculture in China agricultural remote sensing monitoring system (CHARMS). However, it is still at the initial stage of GF-1 data application in agricultural remote sensing monitoring. Advanced algorithms for estimating agronomic parameters and soil quality with GF-1 data need to be further investigated, especially for improving the performance of remote sensing monitoring in the fragmented landscapes. In addition, the thematic product series in terms of land cover, crop allocation, crop growth and production are required to be developed in association with other data sources at multiple spatial scales. Despite the advantages, the issues such as low spectrum resolution and image distortion associated with high spatial resolution and wide swath width, might pose challenges for GF-1 data applications and need to be addressed in future agricultural monitoring. 展开更多
关键词 gf-1 high resolution agricultural monitoring remote sensing CHARMS
下载PDF
Semi-supervised kernel FCM algorithm for remote sensing image classification
4
作者 刘小芳 HeBinbin LiXiaowen 《High Technology Letters》 EI CAS 2011年第4期427-432,共6页
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over... These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others. 展开更多
关键词 remote sensing image classification semi-supervised kernel fuzzy C-means (SSKFCM)algorithm Beijing-1 micro-satellite semi-supcrvisod learning tochnique kernel method
下载PDF
Robust Core Tensor Dictionary Learning with Modified Gaussian Mixture Model for Multispectral Image Restoration 被引量:1
5
作者 Leilei Geng Chaoran Cui +3 位作者 Qiang Guo Sijie Niu Guoqing Zhang Peng Fu 《Computers, Materials & Continua》 SCIE EI 2020年第10期913-928,共16页
The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust mo... The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust modified Gaussian mixture model for MS-RSI restoration.First,the multispectral patch is modeled by three-order tensor and high-order singular value decomposition is applied to the tensor.Then the task of MS-RSI restoration is formulated as a minimum sparse core tensor estimation problem.To improve the accuracy of core tensor coding,the core tensor estimation based on the robust modified Gaussian mixture model is introduced into the proposed model by exploiting the sparse distribution prior in image.When applied to MS-RSI restoration,our experimental results have shown that the proposed algorithm can better reconstruct the sharpness of the image textures and can outperform several existing state-of-the-art multispectral image restoration methods in both subjective image quality and visual perception. 展开更多
关键词 multispectral remote sensing image restoration modified Gaussian mixture sparse core tensor tensor dictionary learning
下载PDF
Class-guided coupled dictionary learning for multispectral-hyperspectral remote sensing image collaborative classification 被引量:2
6
作者 LIU TianZhu GU YanFeng JIA XiuPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第4期744-758,共15页
The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications.As two kinds of typical optical remote sensing data,multispectral images(MSIs)and hyperspectral ... The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications.As two kinds of typical optical remote sensing data,multispectral images(MSIs)and hyperspectral images(HSIs)have complementary characteristics.The MSI has a large swath and short revisit period,but the number of bands is limited with low spectral resolution,leading to weak separability of between class spectra.Compared with MSI,HSI has hundreds of bands and each of them is narrow in bandwidth,which enable it to have the ability of fine classification,but too long in aspects of revisit period.To make efficient use of their combined advantages,multispectral-hyperspectral remote sensing image collaborative classification has become one of hot topics in remote sensing.To deal with the collaborative classification,most of current methods are unsupervised and only consider the HSI reconstruction as the objective.In this paper,a class-guided coupled dictionary learning method is proposed,which is obviously distinguished from the current methods.Specifically,the proposed method utilizes the labels of training samples to construct discriminative sparse representation coefficient error and classification error as regularization terms,so as to enforce the learned coupled dictionaries to be both representational and discriminative.The learned coupled dictionaries facilitate pixels from the same category have similar sparse represent coefficients,while pixels from different categories have different sparse represent coefficients.The experiments on three pairs of HSI and MSI have shown better classification performance. 展开更多
关键词 multimodal remote sensing multispectral image hyperspectral image collaborative classification class-guided coupled dictionary learning
原文传递
Object-oriented land cover classification using HJ-1 remote sensing imagery 被引量:16
7
作者 SUN ZhongPing1,SHEN WenMing1,WEI Bin1,LIU XiaoMan1,SU Wei2,ZHANG Chao2 & YANG JianYu2 1 Satellite Environment Center,Ministry of Environmental Protection,Beijing 100094,China 2 College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China 《Science China Earth Sciences》 SCIE EI CAS 2010年第S1期34-44,共11页
The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolu... The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolution.We used two key techniques:the selection of optimum image segmentation scale and the development of an appropriate object-oriented information extraction strategy.With the principle of minimizing merge cost of merging neighboring pixels/objects,we used spatial autocorrelation index Moran's I and the variance index to select the optimum segmentation scale.The Nearest Neighborhood(NN) classifier based on sampling and a knowledge-based fuzzy classifier were used in the object-oriented information extraction strategy.In this classification step,feature optimization was used to improve information extraction accuracy using reduced data dimension.These two techniques were applied to land cover information extraction for Shanghai city using a HJ-1 CCD image.Results indicate that the information extraction accuracy of the object-oriented method was much higher than that of the pixel-based method. 展开更多
关键词 HJ-1 remote sensing imageRY OBJECT-ORIENTED optimum scale of image segmentation Nearest Neighborhood(NN) CLASSIFICATION fuzzy CLASSIFICATION
原文传递
Multispectral imaging systems for airborne remote sensing to support agricultural production management 被引量:12
8
作者 Yanbo Huang Steven J.Thomson +1 位作者 Yubin Lan Stephan J.Maas 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2010年第1期50-62,共13页
This study investigated three different types of multispectral imaging systems for airborne remote sensing to support management in agricultural application and production.The three systems have been used in agricultu... This study investigated three different types of multispectral imaging systems for airborne remote sensing to support management in agricultural application and production.The three systems have been used in agricultural studies.They range from low-cost to relatively high-cost,manually operated to automated,multispectral composite imaging with a single camera and integrated imaging with custom-mounting of separate cameras.Practical issues regarding use of the imaging systems were described and discussed.The low-cost system,due to band saturation,slow imaging speed and poor image quality,is more preferable to slower moving platforms that can fly close to the ground,such as unmanned autonomous helicopters,but not recommended for low or high altitude aerial remote sensing on fixed-wing aircraft.With the restriction on payload unmanned autonomous helicopters are not recommended for high-cost systems because they are typically heavy and difficult to mount.The system with intermediate cost works well for low altitude aerial remote sensing on fixed-wing aircraft with field shapefile-based global positioning triggering.This system also works well for high altitude aerial remote sensing on fixed-wing aircraft with global positioning triggering or manually operated.The custom-built system is recommended for high altitude aerial remote sensing on fixed-wing aircraft with waypoint global positioning triggering or manually operated. 展开更多
关键词 airborne remote sensing multispectral imaging agricultural production management
原文传递
GF-1和MODIS影像冬小麦长势监测指标NDVI的对比 被引量:14
9
作者 王利民 杨玲波 +2 位作者 刘佳 杨福刚 姚保民 《作物学报》 CAS CSCD 北大核心 2018年第7期1043-1054,共12页
作物长势是农情遥感监测的重要内容之一。长期以来,作物长势遥感监测主要基于卫星影像反演的相关植被参数,如归一化植被指数(NDVI,normalized difference vegetation index)、叶面积指数(LAI,leaf area index)等。本文通过对比研究16 m... 作物长势是农情遥感监测的重要内容之一。长期以来,作物长势遥感监测主要基于卫星影像反演的相关植被参数,如归一化植被指数(NDVI,normalized difference vegetation index)、叶面积指数(LAI,leaf area index)等。本文通过对比研究16 m分辨率GF-1卫星影像及250 m分辨率MODIS影像的NDVI与冬小麦综合茎数、株高、叶绿素浓度之间的关系,尝试建立遥感监测作物长势指标与地面实测作物长势指标的定量关系。研究发现GF-1的NDVI与冬小麦综合茎数的相关性最高(R2=0.8961),而与其他指标相关性较弱;MODIS的NDVI指数与冬小麦综合茎数相关性较低(R2=0.4432),对作物长势的遥感监测精度较低。统计MODIS冬小麦像元内GF-1像元的NDVI平均值,并与MODIS的NDVI对比,发现两者之间的相关性较低(R2=0.3944);在消除MODIS与GF-1影像传感器光谱响应函数差异及NDVI尺度效应后,MODIS影像的冬小麦作物长势遥感监测精度得到一定提高(R2=0.4633)。对MODIS像元内GF-1 NDVI标准差排序发现,MODIS像元内冬小麦长势一致性越高,MODIS的长势遥感监测精度越高。GF-1和MODIS影像NDVI长势监测主要代表地面冬小麦综合茎数,且卫星影像分辨率越高,NDVI值越能反映实际的作物长势。MODIS像元内冬小麦长势一致性越高,基于NDVI的MODIS与GF-1数据冬小麦长势监测结果越一致。从区域长势监测角度来看,尽管MODIS与GF-1数据的监测结果趋势较为一致,并且通过光谱、尺度归一化能够进一步提高监测结果的一致性,但MODIS NDVI长势监测总体精度较低,为满足作物长势精细化监测的业务需要,应逐步使用高分辨率的遥感数据替代中低分辨率遥感数据进行作物长势遥感监测,并将其作为长势监测业务化运行的研究重点。 展开更多
关键词 归一化植被指数 MODIS影像 gf-1影像 遥感监测 冬小麦
下载PDF
基于有理多项式模型区域网平差的GF-1影像几何校正 被引量:19
10
作者 刘佳 王利民 +4 位作者 杨玲波 邵杰 滕飞 杨福刚 富长虹 《农业工程学报》 EI CAS CSCD 北大核心 2015年第22期146-154,共9页
2013年4月成功发射的GF-1卫星是中国高分系列卫星的首发星,影像在中国农情遥感监测业务中得到了广泛应用,已成为大宗农作物种植面积遥感监测的主要数据源之一。高精度几何位置的配准是卫星农情定量化应用的基础与前提,该文提出了一种基... 2013年4月成功发射的GF-1卫星是中国高分系列卫星的首发星,影像在中国农情遥感监测业务中得到了广泛应用,已成为大宗农作物种植面积遥感监测的主要数据源之一。高精度几何位置的配准是卫星农情定量化应用的基础与前提,该文提出了一种基于区域网平差方法修正GF-1卫星WFV(wide field view,WFV)影像RPC(rational polynomial coefficients,RPC)参数,获取更高几何定位精度的校正方法,形成了模式化的业务处理流程,为该影像在农情遥感监测中的应用奠定了基础。算法流程包括2个部分,首先是基于像面间仿射变换关系及有理多项式RFM(rational function model,RFM)模型构建轨道间的区域网平差数学模型,其次是根据影像连接点及少量控制点输入求解所有参与平差的卫星影像定向参数,获取亚像元级的校正结果。平差参数的解算是通过两步求解完成的,初始平差参数是根据连接点及对应的DEM高程值进行平差迭代至收敛,结果平差参数是将初始平差参数作为初始值代入区域网平差模型,并以逐点消元方式约化法方程,解算出各影像的仿射变换参数。该文在求解平差参数过程中,直接使用DEM(digital elevation model)上获取的高程值作为约束条件,消除了平面坐标与高程的相关性,保证了区域网平差模型能够解算。混合地形、平原、山区3种情况下区域网平差结果表明,全连接点平差结果具有较高的相对定位精度,其行方向的中误差分别为0.3046、0.4674、0.3365像元,列方向的中误差分别为0.3677、0.2849、0.2889像元;而结合少量控制点的区域网平差则同时具有很高的绝对定位精度,其行方向的中误差分别为0.3648、0.5041、0.3605像元,列方向的中误差分别为0.4954、0.4039、0.6323像元,整体达到了亚像素级。最后,在农业应用基础控制底图的支持下,分别对原始影像、RPC校正影像、区域网平差后的影像进行几何配准,分析不同输入影像条件下的几何校正精度,仅有区域网平差后的影像达到了亚像元的校正精度,混合地形、平原、山区3种情况下行方向的中误差分别为0.6857、0.6664、1.0646像元,列方向的均方差分别为0.4342、0.4696、0.5609像元,但与几何校正前精度相比没有明显改善,说明本文提出的研究方法可以实现少量控制点条件下的几何精校正。不同DEM校正结果表明,对于山区,更高分辨率的DEM可以获得更好的定位精度。上述研究充分表明,该方法对GF-1/WFV数据的处理有效且可行,并在农业部中国农情遥感业务工作中得到了初步应用。 展开更多
关键词 卫星 遥感 影像处理 高分一号卫星 有理函数模型 区域网平差 逐点消元法
下载PDF
GF-1影像遥感监测指标与冬小麦长势参数的关系 被引量:8
11
作者 单捷 孙玲 +4 位作者 王志明 卢必慧 王晶晶 邱琳 黄晓军 《江苏农业学报》 CSCD 北大核心 2019年第6期1323-1333,共11页
为了分析高分一号卫星(GF-1)影像在冬小麦长势监测中的有效性和适宜性,以建湖县冬小麦为研究对象,选取12个植被指数作为遥感监测指标,运用回归分析法探讨遥感监测指标与地面实测冬小麦长势参数的关系,并以回归模型的决定系数(R 2)作为... 为了分析高分一号卫星(GF-1)影像在冬小麦长势监测中的有效性和适宜性,以建湖县冬小麦为研究对象,选取12个植被指数作为遥感监测指标,运用回归分析法探讨遥感监测指标与地面实测冬小麦长势参数的关系,并以回归模型的决定系数(R 2)作为反演精度的评价指标。研究发现,叶面积指数(LAI)、密度和生物量的反演精度较高,其中LAI的反演精度在拔节期最高[监测指标:红蓝色归一化植被指数(RBNDVI),R 2:0.6894],密度的反演精度在拔节期最高[监测指标:优化的土壤调节植被指数(OSAVI),R 2:0.5438],生物量的反演精度在孕穗期最高[监测指标:归一化植被指数(NDVI),R 2:0.4486],说明GF-1影像适合在拔节期进行冬小麦LAI、密度的监测,在孕穗期进行生物量监测。土壤含水量、株高和叶绿素含量(SPAD值)的反演精度较差,最佳回归模型的R 2皆低于0.3600,说明所选的12个遥感监测指标不适合反演这3个长势参数。除乳熟期外,其他4个生育期中都是LAI的反演精度最高,可见GF-1影像的遥感监测指标与LAI的相关性最好,反演精度最高。本研究结果说明,在进行冬小麦长势监测时,不同的生育期需要采用不同的监测指标,同时GF-1影像则更适合在拔节期和孕穗期进行冬小麦的长势监测。本研究结果在一定程度上为GF-1影像在农情遥感监测中的应用提供了科学依据。 展开更多
关键词 冬小麦 生育期 长势 gf-1影像 遥感监测
下载PDF
基于GF-1影像的西藏亚东地区构造解译研究 被引量:7
12
作者 刘智 黄洁 +2 位作者 孙小飞 范敏 韩磊 《中国地质调查》 2017年第3期17-23,共7页
随着地质调查工作精度的提高,中低分辨率的遥感影像已难以满足地质构造深入解译的需求。高分一号(GF-1)影像的应用为提高地质构造解译尺度提供了数据基础,特别是在人车通达性较差的地区,可大大减少野外工作量。为此,以地质构造发育的西... 随着地质调查工作精度的提高,中低分辨率的遥感影像已难以满足地质构造深入解译的需求。高分一号(GF-1)影像的应用为提高地质构造解译尺度提供了数据基础,特别是在人车通达性较差的地区,可大大减少野外工作量。为此,以地质构造发育的西藏亚东地区为研究区,利用GF-1影像,在分析已有地质资料基础上,构建了研究区的断裂形成机制模型,并结合地形地貌特征,对研究区的地质构造进行遥感解译。结果显示:(1)研究区内解译新增断裂418条;(2)受SN向应力挤压机制影响,形成于中新世晚期的EW走向断裂为主要断裂,其性质为逆冲断层,EW向应力的引张作用,形成了研究区SN向、NE向断裂,并具有多期活动特点;(3)河流和湖泊受断裂控制明显,河流多成SN向,位于逆冲断层上盘的隆升造成了区内河流和湖泊的水位降低。 展开更多
关键词 gf-1影像 遥感 构造
下载PDF
基于GF-1/2卫星数据的冬小麦叶面积指数反演 被引量:11
13
作者 吾木提·艾山江 买买提·沙吾提 +1 位作者 陈水森 李丹 《作物学报》 CAS CSCD 北大核心 2020年第5期787-797,共11页
叶面积指数(leaf area index,LAI)是监测作物生长状况的重要参数,准确、快速、大面积估算LAI不仅有助于更好地监测农作物,而且也有助于其在建模、总体作物管理及精准农业中的应用。本研究为了利用国产遥感影像快速、大面积反演冬小麦LAI... 叶面积指数(leaf area index,LAI)是监测作物生长状况的重要参数,准确、快速、大面积估算LAI不仅有助于更好地监测农作物,而且也有助于其在建模、总体作物管理及精准农业中的应用。本研究为了利用国产遥感影像快速、大面积反演冬小麦LAI,以GF-1/2影像作为数据源,提取常用植被指数,结合不同生育期(起身期、拔节期、开花期)实测LAI数据,建立反演冬小麦LAI的单变量和多变量经验模型,并对其进行验证。结果表明,GF-1起身期、GF-1拔节期以及GF-1开花期提取的植被指数中,MSR(modified simple ratio)、GNDVI(green normalized difference vegetation index)、EVI(enhanced vegetation index)与LAI间的相关系数最大,分别为0.708、0.671和0.743,说明这些植被指数与冬小麦LAI间的相关性较显著;GF-1不同生育期的反演模型相比,基于拔节期GNDVIGF-1建立的二次多项式模型和基于开花期EVIGF-1、GSRGF-1(green simple ratio)、NDVIGF-1(normalized difference vegetation index)建立的PLSR(partial least squares regression)模型R2最大,均为0.783,PLSR模型的RMSE小于二次多项式模型,说明该多变量模型的稳定性优于单变量模型;同一个生育期不同影像相比,基于GF-2的NDVIGF-2建立的二次多项式模型和基于NDVIGF-2、MSRGF-2、SAVIGF-2(soil-adjusted vegetation index)建立的PLSR模型精度高于基于GF-1的2种模型,R2分别为0.768和0.809;不同生育期反演的LAI分布图表明,LAI反演值与实测LAI值基本吻合。以上研究结果说明国产高分辨率遥感影像在农作物生理参数反演中有一定的应用价值,可以为以后的相关研究提供一定的参考。 展开更多
关键词 gf-1/2影像 植被指数 叶面积指数 灰色关联度分析 遥感反演
下载PDF
“GF-1”影像质量评价及矿区土地利用分类潜力研究 被引量:11
14
作者 陈明 周伟 袁涛 《测绘科学技术学报》 CSCD 北大核心 2015年第5期494-499,共6页
为客观评价GF-1影像的质量及其在矿区土地利用分类的应用潜力,选择黄土高原区平朔矿区为研究对象,以同季相的SPOT 6影像作对比分析。在工程质量上,从灰度信息、纹理特征两个方面选取评价指标对其进行研究,统计结果表明:GF-1影像所含信... 为客观评价GF-1影像的质量及其在矿区土地利用分类的应用潜力,选择黄土高原区平朔矿区为研究对象,以同季相的SPOT 6影像作对比分析。在工程质量上,从灰度信息、纹理特征两个方面选取评价指标对其进行研究,统计结果表明:GF-1影像所含信息层次复杂,地物类型表达丰富;纹理特征明显,能用于复杂地类的提取。在应用角度上,构建基于像元的最大似然法和基于面向对象的最邻近两种分类器分别对研究区进行土地类型提取,对比分类结果表明,GF-1影像整体分类效果略次于SPOT 6影像,但GF-1影像仍能够满足用户快速获取矿区土地状况和其周边环境信息的应用要求,具有监测矿区土地变化和分析复垦植被生长状况等方面的潜力,可以为矿山土地生态复垦的整体规划设计和技术实施等提供基础数据。 展开更多
关键词 高分一号 遥感影像 质量评价 土地利用 矿区 面向对象分类
下载PDF
基于GF-1影像的普达措国家公园森林地上生物量遥感估算 被引量:16
15
作者 周俊宏 王子芝 +3 位作者 廖声熙 吴文君 李立 刘文斗 《农业工程学报》 EI CAS CSCD 北大核心 2021年第4期216-223,共8页
精确估算森林地上生物量有利于掌握森林资源碳储量的分布特征,该研究以普达措国家公园为研究区,基于国产高分一号(GF-1)全色多光谱(Panchromatic Multispectral Sensor,PMS)卫星影像和数字高程数据,提取波段信息、植被指数、纹理信息和... 精确估算森林地上生物量有利于掌握森林资源碳储量的分布特征,该研究以普达措国家公园为研究区,基于国产高分一号(GF-1)全色多光谱(Panchromatic Multispectral Sensor,PMS)卫星影像和数字高程数据,提取波段信息、植被指数、纹理信息和地形因子,利用多元线性逐步回归、支持向量机、神经网络和随机森林模型,估算森林地上生物量。研究结果表明,基于GF-1影像构建的随机森林模型的精度效果最佳,决定系数为0.77,均方根误差为27.53 t/hm^(2);普达措国家公园森林地上生物量为7085614t,平均生物量达136.01t/hm^(2),表明公园内寒温性针叶林发育完好;海拔>3500~4000m区域森林生物量平均值最高,为126.56t/hm^(2),与生态保护目标分布范围相符;不同坡向生物量存在差异,阴坡和半阴坡平均生物量高出其他坡向20.48%,立地条件较优。研究结果证实基于GF-1优化的生物量经验模型具有对亚高山天然林地上生物量的估算潜力,对区域森林资源的有效科学管理和维护森林生态环境具有重要意义。 展开更多
关键词 遥感 林业 地上生物量 gf-1影像 经验模型 空间分布 普达措国家公园
下载PDF
基于GF-1卫星数据与面向对象分类的达里诺尔湿地自然保护区土地覆盖信息提取 被引量:8
16
作者 王艳琦 秦福莹 +1 位作者 银山 彭秀清 《中国农学通报》 2019年第10期137-141,共5页
以达里诺尔湿地自然保护区为研究区,基于国产GF-1遥感影像,采用面向对象和传统目视解译的分类方法对研究区土地覆盖遥感信息进行提取,并对其结果进行对比分析,采取混淆矩阵对面向对象分类结果进行精度验证。结果表明:(1)充分利用了GF-1... 以达里诺尔湿地自然保护区为研究区,基于国产GF-1遥感影像,采用面向对象和传统目视解译的分类方法对研究区土地覆盖遥感信息进行提取,并对其结果进行对比分析,采取混淆矩阵对面向对象分类结果进行精度验证。结果表明:(1)充分利用了GF-1遥感影像的光谱信息,面向对象分类采取试错法确定最优分割尺度为550,形状和紧致度因子分别为0.6和0.5,各波段权重均为1;(2)面向对象分类总体分类精度达98.22%,KAPPA系数为0.96;(3)面向对象分类方法可快速准确提取类型较为复杂的土地覆盖信息,为内陆湿地精准快速提取研究区土地覆盖分类信息提供参考,以期为湿地遥感业务化监测提供技术规范。 展开更多
关键词 gf-1遥感影像 达里诺尔湿地自然保护区 土地覆盖 面向对象分类
下载PDF
基于GF-1和Sentinel-2时序数据的茶园识别 被引量:9
17
作者 柏佳 孙睿 +2 位作者 张赫林 王岩 金志凤 《农业工程学报》 EI CAS CSCD 北大核心 2021年第14期179-185,共7页
由于茶园大多分布在地形复杂的山区,地块破碎,分布零散,形状差异大、植被混杂且茶园所处环境长期受到云雨的影响,增加了茶园遥感识别的难度与不确定性,针对这一问题,该研究提出了利用高分1号(GF-1)和哨兵2号(Sentinel-2)时序数据提取茶... 由于茶园大多分布在地形复杂的山区,地块破碎,分布零散,形状差异大、植被混杂且茶园所处环境长期受到云雨的影响,增加了茶园遥感识别的难度与不确定性,针对这一问题,该研究提出了利用高分1号(GF-1)和哨兵2号(Sentinel-2)时序数据提取茶园的方法,以浙江省武义县王宅镇为研究区,采用GF-1号为主要数据源,并利用MODIS地表反射率产品和Sentinel-2反射率数据,基于时空融合算法得到时间分辨率5 d的10 m Sentinel-2完整的时序数据。综合利用GF-1在空间细节方面的优势和重建的Sentinel-2高观测频率时序数据在反映茶树生长过程方面的优势,分别基于GF-1的光谱和纹理特征及GF-1的光谱、纹理特征和Sentinel-2时序特征两种特征组合方式,采用随机森林算法提取茶园。结果表明,GF-1光谱、纹理信息结合Sentinel-2时序信息分类结果的准确率、错误率、精确率、召回率和F1分数分别为96.91%、3.09%、89.00%、83.09%和0.86,仅基于GF-1光谱和纹理信息的分类准确率、错误率、精确率、召回率和F1分数分别为94.72%、5.28%、73.09%、84.61%和0.78,添加时序信息分类结果总体优于未添加时序信息的分类结果。表明高空间分辨率结合高频率时序遥感数据是提高茶园分类精度的有效手段。 展开更多
关键词 遥感 图像处理 光谱分析 茶园识别 gf-1 Sentinel-2时序信息 随机森林
下载PDF
运用GF-1影像光谱和纹理信息构建森林蓄积量估测模型 被引量:9
18
作者 刘伯涛 李崇贵 +2 位作者 郭瑞霞 刘思涵 马婷 《东北林业大学学报》 CAS CSCD 北大核心 2020年第1期9-12,28,共5页
以GF-1遥感影像为数据源,研究区森林资源二类调查数据为样地实测数据,综合考虑光谱、地形、纹理特征,利用多元线性回归、BP神经网络、支持向量机和随机森林建立研究区森林蓄积量估测模型,并验证模型预测的性能。结果表明:4种模型预测评... 以GF-1遥感影像为数据源,研究区森林资源二类调查数据为样地实测数据,综合考虑光谱、地形、纹理特征,利用多元线性回归、BP神经网络、支持向量机和随机森林建立研究区森林蓄积量估测模型,并验证模型预测的性能。结果表明:4种模型预测评价指标的决定系数(R2)和均方根误差(RMSE)相近,但有一定的差异,多元线性回归模型R2和RMSE分别为0.446、39.979 6 m^3·hm^-2,BP神经网络模型R2和RMSE分别为0.474、39.703 9 m^3·hm^-2,支持向量机模型R2和RMSE分别为0.485、38.924 8 m^3·hm^-2,随机森林模型R2和RMSE分别为0.534、37.882 2 m^3·hm^-2;3种机器学习方法构建的蓄积量估测模型预测性能优于传统的多元线性回归模型,随机森林模型的预测性能最优。 展开更多
关键词 gf-1遥感影像 森林蓄积量 多元线性回归 随机森林 支持向量机 BP神经网络
下载PDF
GF-1遥感影像结合等高线消除云层干扰的连续水体重建法 被引量:7
19
作者 张珂 吴南 +5 位作者 徐国鑫 刘林鑫 范亚洲 张企诺 周佳奇 刘挺 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期295-302,共8页
为了解决遥感影像水体提取时易受到云干扰的问题,针对连续水体局部受云层干扰的影像图,采用高精度地形信息与高分一号卫星(GF-1)遥感影像两种数据相结合的方法重建水体。分别对高分一号卫星影像数据和高精度等高线地形数据进行预处理后... 为了解决遥感影像水体提取时易受到云干扰的问题,针对连续水体局部受云层干扰的影像图,采用高精度地形信息与高分一号卫星(GF-1)遥感影像两种数据相结合的方法重建水体。分别对高分一号卫星影像数据和高精度等高线地形数据进行预处理后,对缓冲区多次迭代提取未受云层覆盖的部分水体,通过对两种数据的地理配准、数学统计计算等图像运算确定水体还原水位值,从而还原云层影响下的水面面积。结果表明:该方法可以有效消除云层的影响,7幅受云层干扰影像提取水体还原后的水体面积平均相对误差在5%以内,与参考值相比,水体面积平均差值为0.0809 km^(2)。该方法较准确地还原了云层干扰下的水体面积,可广泛应用于受云层干扰影像的水体提取。 展开更多
关键词 水体提取 地形信息 遥感影像 地理配准 云层干扰消除 高分一号卫星 东方红水库
下载PDF
基于GF-1卫星数据的洱海干季水质时空变化监测 被引量:7
20
作者 祁兰兰 王金亮 +1 位作者 农兰萍 刘钱威 《人民长江》 北大核心 2021年第9期24-31,共8页
为探究2014~2019年洱海干季水质变化规律及其驱动因子,选用2014~2019年1月和11月GF-1号卫星遥感影像资料,以叶绿素a浓度、透明度、富营养化指数这3个指标为研究标的开展洱海水质反演。结果表明:①时间上,2014~2019年洱海叶绿素a浓度和... 为探究2014~2019年洱海干季水质变化规律及其驱动因子,选用2014~2019年1月和11月GF-1号卫星遥感影像资料,以叶绿素a浓度、透明度、富营养化指数这3个指标为研究标的开展洱海水质反演。结果表明:①时间上,2014~2019年洱海叶绿素a浓度和富营养化指数逐年降低,透明度逐渐增加,洱海干季水质呈好转趋势。②空间上,洱海2014~2019年11月份整体上呈现叶绿素a浓度和富营养化指数北部低、南部高,透明度北部高、南部低,北部水质较好,南部水质偏差的趋势;1月份整体上呈现叶绿素a浓度中部较高,南、北部偏低,北部水质较好,透明度由北向南递减,富营养化指数由北向南增加的趋势。③洱海叶绿素a浓度和富营养化指数均与水体总氮、总磷含量呈显著正相关关系(P<0.05),水体透明度与总氮、总磷含量呈显著负相关关系。 展开更多
关键词 水质监测 时空变化 叶绿素A浓度 透明度 富营养化指数 gf-1卫星影像 洱海
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部