The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly ...Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.展开更多
调制传递函数(modulation transfer function,MTF)不仅是监测遥感卫星光学相机在轨运行情况和性能的有效手段,也是对卫星图像进行复原处理的重要参数。利用刀刃法对高分二号(GF-2)卫星全色相机进行MTF在轨测量。在计算MTF的过程中,使用...调制传递函数(modulation transfer function,MTF)不仅是监测遥感卫星光学相机在轨运行情况和性能的有效手段,也是对卫星图像进行复原处理的重要参数。利用刀刃法对高分二号(GF-2)卫星全色相机进行MTF在轨测量。在计算MTF的过程中,使用汉明窗对截取后的线扩展函数(line spread function,LSF)曲线进行处理,以抑制截取过程所造成的频谱泄露。此外,还对截取后LSF曲线的两端补0,扩展LSF曲线的长度,以提高傅里叶变换时的采样频率。实验结果表明,使用本文刀刃法计算所得的MTF采样密度比传统方法提高了5倍,使得MTF曲线更为平滑,提高了MTF的数值精度,有利于后续的图像复原处理。基于传统刀刃法和本文刀刃法计算所得的MTF测量结果,采用维纳滤波法分别对GF-2全色图像进行复原处理研究。结果表明,对2种方法得到的MTF测量结果的维纳滤波均可明显提高图像的清晰度和边缘细节信息;但使用本文方法得到的MTF结果可使复原后的图像在对比度、边缘能量和平均梯度等关键指标上均优于使用传统方法得到的MTF结果。展开更多
High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection...High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.展开更多
The goals of engineering and scientific missions for Chang'E-2 lunar satellite require high detection sensitivity and large imaging dynamic range for the onboard CCD cameras. The TDI CCD image sensor was adopted for ...The goals of engineering and scientific missions for Chang'E-2 lunar satellite require high detection sensitivity and large imaging dynamic range for the onboard CCD cameras. The TDI CCD image sensor was adopted for the two linear CCD stereo cameras for the first time in the lunar reconnaissance of the world. The design argumentation is described in this paper. The analysis shows that the imagers meet the mission requirements. The satellite was launched on 1 October 2010 at zero window. The cameras obtained images of 7 m resolution on the 100 km orbit for the first time on 24 October 2010, and operated once again on 27 October 2010 to take stereo images of the Sinus Iridum with the resolution better than 1.5 m. On the near-moon-arc of 15 kmxl00 km elliptical orbit, the images are very clear and rich of grey scales, indicating successful completion of the Chang'E-2 engineering mission. At the present the cameras are acquiring the full lunar surface stereo images with 7 m resolution on the 100 km circular orbit to complete their scientific mission.展开更多
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1400901 and 2018YFC1406600the National Natural Science Foundation of China under contract No.40706057+1 种基金the Environmental Protection and Science and Technology Plan Project of Zhejiang Province of China under contract No.2013A021the Research Center for Air Pollution and Health of Zhejiang University
文摘Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.
文摘调制传递函数(modulation transfer function,MTF)不仅是监测遥感卫星光学相机在轨运行情况和性能的有效手段,也是对卫星图像进行复原处理的重要参数。利用刀刃法对高分二号(GF-2)卫星全色相机进行MTF在轨测量。在计算MTF的过程中,使用汉明窗对截取后的线扩展函数(line spread function,LSF)曲线进行处理,以抑制截取过程所造成的频谱泄露。此外,还对截取后LSF曲线的两端补0,扩展LSF曲线的长度,以提高傅里叶变换时的采样频率。实验结果表明,使用本文刀刃法计算所得的MTF采样密度比传统方法提高了5倍,使得MTF曲线更为平滑,提高了MTF的数值精度,有利于后续的图像复原处理。基于传统刀刃法和本文刀刃法计算所得的MTF测量结果,采用维纳滤波法分别对GF-2全色图像进行复原处理研究。结果表明,对2种方法得到的MTF测量结果的维纳滤波均可明显提高图像的清晰度和边缘细节信息;但使用本文方法得到的MTF结果可使复原后的图像在对比度、边缘能量和平均梯度等关键指标上均优于使用传统方法得到的MTF结果。
基金supported by National Key Research and Development Program of China under grant number 2022YFB3903404National Natural Science Foundation of China under grant number 42325105,42071350LIESMARS Special Research Funding.
文摘High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.
文摘The goals of engineering and scientific missions for Chang'E-2 lunar satellite require high detection sensitivity and large imaging dynamic range for the onboard CCD cameras. The TDI CCD image sensor was adopted for the two linear CCD stereo cameras for the first time in the lunar reconnaissance of the world. The design argumentation is described in this paper. The analysis shows that the imagers meet the mission requirements. The satellite was launched on 1 October 2010 at zero window. The cameras obtained images of 7 m resolution on the 100 km orbit for the first time on 24 October 2010, and operated once again on 27 October 2010 to take stereo images of the Sinus Iridum with the resolution better than 1.5 m. On the near-moon-arc of 15 kmxl00 km elliptical orbit, the images are very clear and rich of grey scales, indicating successful completion of the Chang'E-2 engineering mission. At the present the cameras are acquiring the full lunar surface stereo images with 7 m resolution on the 100 km circular orbit to complete their scientific mission.