Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity comm...Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.展开更多
Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)t...Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.展开更多
Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems...Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.展开更多
Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integ...Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.展开更多
Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first...Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.展开更多
The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multi...The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multiimaging mode, a multi-polarization phased array SAR antenna, and in internal calibration technology. The satellite technology adopted the principle of "Demand Pulls, Technology Pushes", creating a series of innovation firsts, reaching or surpassing the technical specifications of an international level.展开更多
The 5G and satellite converged communication network(5G SCCN)is an impor⁃tant component of the integration of satellite-terrestrial networks,the national science,and technology major projects towards 2030.Security is ...The 5G and satellite converged communication network(5G SCCN)is an impor⁃tant component of the integration of satellite-terrestrial networks,the national science,and technology major projects towards 2030.Security is the key to ensuring its operation,but at present,the research in this area has just started in our country.Based on the network char⁃acteristics and security risks,we propose the security architecture of the 5G SCCN and sys⁃tematically sort out the key protection technologies and improvement directions.In particu⁃lar,unique thinking on the security of lightweight data communication and design reference for the 5G SCCN network architecture is presented.It is expected to provide a piece of refer⁃ence for the follow-up 5G SCCN security technology research,standard evolution,and indus⁃trialization.展开更多
A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons an...A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).展开更多
With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteor...With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and Na- tional Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental fore- casts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.展开更多
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based ...We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based on 5G technology,which provides a view of common satellite network slicing and supports flexible network deployment between the satellite and the ground.Specifically,considering the limited satellite network resource and the characteristics of the satellite channel,we propose a novel satellite E2E network slicing architecture.Therein,the deployment of the network functions between the satellite and the ground is coordinately considered.Subsequently,the classification and the isolation technologies of satellite network sub-slices are proposed adaptively based on 5G technology to support resource allocation on demand.Then,we develop the management technologies for the satellite E2E network slicing including slicing key performance indicator(KPI) design,slicing deployment,and slicing management.Finally,the analysis of the challenges and future work shows the potential research in the future.展开更多
GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Poi...GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.展开更多
GF-3,China’s first C-band Synthetic Aperture Radar(SAR)satellite with multiple polarizations,has been put into use from January 23.The SAR-C satellite has a 1 m resolution.CNSA Deputy Director WU Yanhua and CASC Vice...GF-3,China’s first C-band Synthetic Aperture Radar(SAR)satellite with multiple polarizations,has been put into use from January 23.The SAR-C satellite has a 1 m resolution.CNSA Deputy Director WU Yanhua and CASC Vice President YANG Baohua attended the ceremony for the commencement of formal operation of GF-3.GF-3 is the first LEO remote sens-展开更多
The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications...The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications sector.To address these challenges,a comprehensive understanding of the integration of 5G/6G networks and LEO(Low Earth Orbit)satellite networks is required,forming the concept of“integrated networks”.Integration offers valuable advantages,including service continuity,wide-area coverage,and support for critical communications and emerging applications.This paper provides a high-level overview of the convergence of 5G/6G,LEO satellites,and IoT devices,shedding light on the technological challenges and standardization issues associated with the transition from 5G to 6G networks using NTNs(Non-Terrestrial Networks)based on LEO satellites.Furthermore,this research delves into the emerging social issues,potential possibilities,and the paradigm shift from the IoT to the IoI(Internet of Intelligence),which is poised to revolutionize the landscape of 6G wireless networks.By highlighting the interconnectedness of 5G/6G networks,LEO satellite systems,and IoT devices,it underscores the importance of leveraging these converging technologies to address environmental protection and achieve the United Nations SDGs(Sustainable Development Goals).In addition to providing valuable insights for readers seeking to comprehend the convergence of 5G/6G networks,LEO satellite systems,and IoT devices,this paper represents the outcomes of a comprehensive analysis conducted at the ECSTAR(Excellence Center of Space Technology and Research).Through an examination of technological challenges and advancements,it identifies future research directions and potential avenues for exploration at ECSTAR,thereby contributing to a broader understanding of integrated networks and their profound impact on future telecommunications systems.This research serves as a significant resource for advancing the knowledge and discourse surrounding the linkages between the convergence of these technologies,environmental protection,and the pursuit of the SDGs.展开更多
文摘Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.
基金the National Natural Science Foundation of China(Grant Nos.42025504,No.41905023)National Natural Science Youth Science Foundation(Grant No.41701406)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.:2021122).
文摘Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.
基金This work was supported in part by the National Science Fund for Distinguished Young Scholars in China under grant 61425012the National Science Foundation Project in China under grant 61931005 and 61731017.
文摘Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.
基金supported by the National Key R&D Program of China(2020YFB1805500)National Natural Science Foundation of China(61922017,62032003 and 61921003)。
文摘Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.
基金The National Key R&D Program of China under contract No.2016YFC1401007the National Natural Science Foundation of China under contract Nos 41406203 and 41621064the National High Resolution Project of China under contract No.41-Y20A14-9001-15/16
文摘Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.
文摘The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multiimaging mode, a multi-polarization phased array SAR antenna, and in internal calibration technology. The satellite technology adopted the principle of "Demand Pulls, Technology Pushes", creating a series of innovation firsts, reaching or surpassing the technical specifications of an international level.
文摘The 5G and satellite converged communication network(5G SCCN)is an impor⁃tant component of the integration of satellite-terrestrial networks,the national science,and technology major projects towards 2030.Security is the key to ensuring its operation,but at present,the research in this area has just started in our country.Based on the network char⁃acteristics and security risks,we propose the security architecture of the 5G SCCN and sys⁃tematically sort out the key protection technologies and improvement directions.In particu⁃lar,unique thinking on the security of lightweight data communication and design reference for the 5G SCCN network architecture is presented.It is expected to provide a piece of refer⁃ence for the follow-up 5G SCCN security technology research,standard evolution,and indus⁃trialization.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1402704 and2016YFC1401007the International Science and Technology Cooperation Project of China under contract No.2011DFA22260
文摘A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).
基金Supported by Major State Basic Research Development Program of China (973 Program, No.2005CB4223-01) and Key Technologies R & D Program of China (No.2001BA603B-01).
文摘With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and Na- tional Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental fore- casts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
文摘We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based on 5G technology,which provides a view of common satellite network slicing and supports flexible network deployment between the satellite and the ground.Specifically,considering the limited satellite network resource and the characteristics of the satellite channel,we propose a novel satellite E2E network slicing architecture.Therein,the deployment of the network functions between the satellite and the ground is coordinately considered.Subsequently,the classification and the isolation technologies of satellite network sub-slices are proposed adaptively based on 5G technology to support resource allocation on demand.Then,we develop the management technologies for the satellite E2E network slicing including slicing key performance indicator(KPI) design,slicing deployment,and slicing management.Finally,the analysis of the challenges and future work shows the potential research in the future.
基金Independent Project of State Key Laboratory of Geo-information Engineering(SKLGIE2022-ZZ-01)The Youth Science Innovation Fund(No.2023-01)。
文摘GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.
文摘GF-3,China’s first C-band Synthetic Aperture Radar(SAR)satellite with multiple polarizations,has been put into use from January 23.The SAR-C satellite has a 1 m resolution.CNSA Deputy Director WU Yanhua and CASC Vice President YANG Baohua attended the ceremony for the commencement of formal operation of GF-3.GF-3 is the first LEO remote sens-
文摘The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications sector.To address these challenges,a comprehensive understanding of the integration of 5G/6G networks and LEO(Low Earth Orbit)satellite networks is required,forming the concept of“integrated networks”.Integration offers valuable advantages,including service continuity,wide-area coverage,and support for critical communications and emerging applications.This paper provides a high-level overview of the convergence of 5G/6G,LEO satellites,and IoT devices,shedding light on the technological challenges and standardization issues associated with the transition from 5G to 6G networks using NTNs(Non-Terrestrial Networks)based on LEO satellites.Furthermore,this research delves into the emerging social issues,potential possibilities,and the paradigm shift from the IoT to the IoI(Internet of Intelligence),which is poised to revolutionize the landscape of 6G wireless networks.By highlighting the interconnectedness of 5G/6G networks,LEO satellite systems,and IoT devices,it underscores the importance of leveraging these converging technologies to address environmental protection and achieve the United Nations SDGs(Sustainable Development Goals).In addition to providing valuable insights for readers seeking to comprehend the convergence of 5G/6G networks,LEO satellite systems,and IoT devices,this paper represents the outcomes of a comprehensive analysis conducted at the ECSTAR(Excellence Center of Space Technology and Research).Through an examination of technological challenges and advancements,it identifies future research directions and potential avenues for exploration at ECSTAR,thereby contributing to a broader understanding of integrated networks and their profound impact on future telecommunications systems.This research serves as a significant resource for advancing the knowledge and discourse surrounding the linkages between the convergence of these technologies,environmental protection,and the pursuit of the SDGs.