In this paper, we study the GJR scaling model which embeds the intraday return processes into the daily GJR model and propose a class of robust M-estimates for it. The estimation procedures would be more efficient whe...In this paper, we study the GJR scaling model which embeds the intraday return processes into the daily GJR model and propose a class of robust M-estimates for it. The estimation procedures would be more efficient when high-frequency data is taken into the model. However, high-frequency data brings noises and outliers which may lead to big bias of the estimators. Therefore, robust estimates should be taken into consideration. Asymptotic results are derived from the robust M-estimates without the finite fourth moment of the innovations. A simulation study is carried out to assess the performance of the model and its estimates.Robust M-estimate of GJR model is also applied in predicting Va R for real financial time series.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.71003100)the Research Funds of Renmin University of China(No.11XNK027)
文摘In this paper, we study the GJR scaling model which embeds the intraday return processes into the daily GJR model and propose a class of robust M-estimates for it. The estimation procedures would be more efficient when high-frequency data is taken into the model. However, high-frequency data brings noises and outliers which may lead to big bias of the estimators. Therefore, robust estimates should be taken into consideration. Asymptotic results are derived from the robust M-estimates without the finite fourth moment of the innovations. A simulation study is carried out to assess the performance of the model and its estimates.Robust M-estimate of GJR model is also applied in predicting Va R for real financial time series.