针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得...针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得到若干的乘积函数(Product Function,PF)分量和一个残差。然后,通过PF分量和原始轴承故障信号的相关性分析,选取与原始信号相关性最大的PF分量,并求取PF分量的模糊熵值作为特征向量。最终,通过GK聚类对所得的特征向量进行识别分类。通过对滚动轴承正常状态、内圈故障、滚动体故障和外圈故障的轴承四种状态分析表明,基于ELMD模糊熵和GK聚类的方法能够准确有效的对轴承故障状态进行分类识别。展开更多
A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was appli...A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications.展开更多
文摘针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得到若干的乘积函数(Product Function,PF)分量和一个残差。然后,通过PF分量和原始轴承故障信号的相关性分析,选取与原始信号相关性最大的PF分量,并求取PF分量的模糊熵值作为特征向量。最终,通过GK聚类对所得的特征向量进行识别分类。通过对滚动轴承正常状态、内圈故障、滚动体故障和外圈故障的轴承四种状态分析表明,基于ELMD模糊熵和GK聚类的方法能够准确有效的对轴承故障状态进行分类识别。
基金Sponsored by the National High Technology Research and Development Program of China("863"Program)(2003AA501800)
文摘A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications.