Regeneration of transplantable pancreatic islet cells has been considered to be a promising alternative therapy for type 1 diabetes. Re-search has suggested that adult pancreatic stem and progenitor cells can be deriv...Regeneration of transplantable pancreatic islet cells has been considered to be a promising alternative therapy for type 1 diabetes. Re-search has suggested that adult pancreatic stem and progenitor cells can be derived into insulin-producing cells or cultivated islet-like clusters given appropriate stimulating condi- tions. In this study we explored the effect of selective extracellular matrix (ECM) proteins on the potential of insulin-producing cell differen-tiation using ARIP cells, an adult rat pancreatic ductal epithelial cell line, as a model in vitro. Quantitative single cell morphology analysis indicated that all the four ECM proteins we have used (type I collagen, laminin, fibronectin and vitronectin) increased the single cell area and diameter of ARIP cells. In addition, se-rum-free cell cultivation was dependent on cell density and particular components;and serum could be replaced when systematic optimisa-tion could be performed. Surface treated with laminin was shown to be able to enhance overall cell expansion in the presence of de-fined serum-free medium conditions. Collagen treated surfaces enhanced insulin production in the presence of GLP-1 although the insulin gene expression was however weak accord-ingly. Our results suggest that selective ECM proteins have effects on single cell morphol-ogy, adhesion and proliferation of ARIP cells. These ECM molecules however do not have a potent effect on the insulin-producing cell dif-ferentiation potential of ARIP cells even com-bining with GLP-1.展开更多
Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)protect against diabetic cardiovascular diseases and nephropathy.However,their activity in diabetic retinopathy(DR)remains unclear.Our retrospective cohort study inv...Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)protect against diabetic cardiovascular diseases and nephropathy.However,their activity in diabetic retinopathy(DR)remains unclear.Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications,suggesting their advantage in DR treatment.By single-cell RNA-sequencing analysis and immunostaining,we observed a high expression of GLP-1R in retinal endothelial cells,which was down-regulated under diabetic conditions.Treatment of GLP-1 RAs significantly restored the receptor expression,resulting in an improvement in retinal degeneration,vascular tortuosity,avascular vessels,and vascular integrity in diabetic mice.GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs.Additionally,the treatment attenuated STING signaling activation in retinal endothelial cells,which is typically activated by leaked mitochondrial DNA.Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes.Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling.This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.展开更多
自胰高血糖素样肽1(glucagon-like pe ptide-1,GLP-1)发现以来,国内外研究焦点主要集中在降糖疗效上。糖尿病主要并发症是动脉粥样硬化(athero-sclerosis,As),GLP-1对As及其心血管风险是否有防治作用受到高度关注[1-2]。As病变触发...自胰高血糖素样肽1(glucagon-like pe ptide-1,GLP-1)发现以来,国内外研究焦点主要集中在降糖疗效上。糖尿病主要并发症是动脉粥样硬化(athero-sclerosis,As),GLP-1对As及其心血管风险是否有防治作用受到高度关注[1-2]。As病变触发于内膜,伴有血管平滑肌细胞(vascular smooth muscle cell,VSMC)的增生迁移和免疫细胞浸润[3]。展开更多
文摘Regeneration of transplantable pancreatic islet cells has been considered to be a promising alternative therapy for type 1 diabetes. Re-search has suggested that adult pancreatic stem and progenitor cells can be derived into insulin-producing cells or cultivated islet-like clusters given appropriate stimulating condi- tions. In this study we explored the effect of selective extracellular matrix (ECM) proteins on the potential of insulin-producing cell differen-tiation using ARIP cells, an adult rat pancreatic ductal epithelial cell line, as a model in vitro. Quantitative single cell morphology analysis indicated that all the four ECM proteins we have used (type I collagen, laminin, fibronectin and vitronectin) increased the single cell area and diameter of ARIP cells. In addition, se-rum-free cell cultivation was dependent on cell density and particular components;and serum could be replaced when systematic optimisa-tion could be performed. Surface treated with laminin was shown to be able to enhance overall cell expansion in the presence of de-fined serum-free medium conditions. Collagen treated surfaces enhanced insulin production in the presence of GLP-1 although the insulin gene expression was however weak accord-ingly. Our results suggest that selective ECM proteins have effects on single cell morphol-ogy, adhesion and proliferation of ARIP cells. These ECM molecules however do not have a potent effect on the insulin-producing cell dif-ferentiation potential of ARIP cells even com-bining with GLP-1.
基金supported by grants from the National Natural Science Foundation of China(82000782,82270886,82070811)the Foster Program for NSFC at the Third Affiliated Hospital of Sun Yat-Sen University(2020G2RPYQN11,China)+3 种基金China International Medical Foundation(2018-N-01)the Science and Technology Plan Project of Guangzhou City(2024A03J0002,China)Key Area R&D Program of Guangdong Province(2019B020227003,China)Sci-Tech Research Development Program of Guangzhou City(202201020589,China).
文摘Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)protect against diabetic cardiovascular diseases and nephropathy.However,their activity in diabetic retinopathy(DR)remains unclear.Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications,suggesting their advantage in DR treatment.By single-cell RNA-sequencing analysis and immunostaining,we observed a high expression of GLP-1R in retinal endothelial cells,which was down-regulated under diabetic conditions.Treatment of GLP-1 RAs significantly restored the receptor expression,resulting in an improvement in retinal degeneration,vascular tortuosity,avascular vessels,and vascular integrity in diabetic mice.GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs.Additionally,the treatment attenuated STING signaling activation in retinal endothelial cells,which is typically activated by leaked mitochondrial DNA.Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes.Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling.This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.