期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fracture prediction method for deep coalbed methane reservoirs based on seismic texture attributes
1
作者 Zhang Bing Qi Xue-mei +2 位作者 Huang Ya-ping Zhang Hai-feng Huang Fan-rui 《Applied Geophysics》 SCIE CSCD 2024年第4期794-804,881,共12页
Deep coalbed methane(CBM)resources are enormous and have become a hot topic in the unconventional exploration and development of natural gas.The fractures in CBM reservoirs are important channels for the storage and m... Deep coalbed methane(CBM)resources are enormous and have become a hot topic in the unconventional exploration and development of natural gas.The fractures in CBM reservoirs are important channels for the storage and migration of CBM and control the high production and enrichment of CBM.Therefore,fracture prediction in deep CBM reservoirs is of great significance for the exploration and development of CBM.First,the basic principles of calculating texture attributes by gray-level cooccurrence matrix(GLCM)and gray-level run-length matrix(GLRLM)were introduced.A geological model of the deep CBM reservoirs with fractures was then constructed and subjected to seismic forward simulation.The seismic texture attributes were extracted using the GLCM and GLRLM.The research results indicate that the texture attributes calculated by both methods are responsive to fractures,with the 45°and 135°gray level inhomogeneity texture attributes based on the GLRLM showing better identification effects for fractures.Fracture prediction of a deep CBM reservoir in the Ordos Basin was carried out based on the GLRLM texture attributes,providing an important basis for the effi cient development and utilization of deep CBM. 展开更多
关键词 texture attributes deep coalbed methane FRACTURES glrlm
下载PDF
基于MTF-gcForest的带钢表面缺陷分类方法研究
2
作者 马文杰 王杰 《机械》 2024年第2期7-12,64,共7页
针对带钢表面缺陷位置分布不均、类型复杂多样的特点,为保证特征提取的维度丰富性与识别准确率,提出一种基于多纹理特征融合与gcForest集成学习相结合的带钢缺陷识别方法MTF-gcForest。首先提取带钢表面的灰度共生矩阵、局部二值模式、... 针对带钢表面缺陷位置分布不均、类型复杂多样的特点,为保证特征提取的维度丰富性与识别准确率,提出一种基于多纹理特征融合与gcForest集成学习相结合的带钢缺陷识别方法MTF-gcForest。首先提取带钢表面的灰度共生矩阵、局部二值模式、灰度游程矩阵特征,以充分挖掘带钢表面的纹理信息。然后,将归一化处理后的特征进行融合,最后用gcForest分类器进行分类。实验比较了单纹理特征和多纹理特征的性能表现,以及多种分类器的分类精度。实验结果表明:基于MTF-gcForest方法的平均准确率达到97.22%,优于其他带钢表面缺陷检测算法,具有较强的推广意义。 展开更多
关键词 带钢 缺陷检测 纹理特征 灰度共生矩阵 灰度游程矩阵 局部二值模式 gcForest
下载PDF
行程长度纹理特征应用于肠癌病理图片识别 被引量:8
3
作者 龙胜春 尧丽君 《浙江工业大学学报》 CAS 北大核心 2015年第1期110-114,共5页
传统的肠癌病理诊断都由病理医生完成,随着图像处理技术的发展,为满足医学病理图像辅助诊断的需要,提出用灰度行程纹理特征(GLRLM)来识别大肠病变切片.考虑到传统的灰度行程长度纹理特征预处理方式未充分利用图像彩色信息和病理图像的... 传统的肠癌病理诊断都由病理医生完成,随着图像处理技术的发展,为满足医学病理图像辅助诊断的需要,提出用灰度行程纹理特征(GLRLM)来识别大肠病变切片.考虑到传统的灰度行程长度纹理特征预处理方式未充分利用图像彩色信息和病理图像的组织学信息,提出将模糊C均值应用于大肠彩色病理图像的预处理,然后提取图像的行程长度纹理特征,最后利用支持向量机分类.通过与灰度共生矩阵纹理特征对比,行程长度纹理特征和改进的行程长度纹理特征具有更高的分类准确率.同时用SVM分类器与BP神经网络、最近邻分类器对比,根据实验结果得出SVM分类器更适合小样本肠癌病理图像的分类. 展开更多
关键词 肠癌 模糊C均值 灰度行程长度 辅助诊断 支持向量机
下载PDF
非均衡训练集过采样的印刷套准识别方法 被引量:2
4
作者 简川霞 叶荣 +2 位作者 林浩 贺鑫 杜美剑 《包装工程》 CAS 北大核心 2020年第21期251-260,共10页
目的针对印刷标志图像训练数据集非均衡性导致印刷标志图像中少类数据套准状态识别准确率低的问题,提出改进的SMOTE训练集过采样方法,以提高少类数据的识别准确率。方法提取印刷标志图像灰度行程矩阵的纹理特征,组成多维的模型输入特征... 目的针对印刷标志图像训练数据集非均衡性导致印刷标志图像中少类数据套准状态识别准确率低的问题,提出改进的SMOTE训练集过采样方法,以提高少类数据的识别准确率。方法提取印刷标志图像灰度行程矩阵的纹理特征,组成多维的模型输入特征数据。基于少类样本的邻域信息,得到少类样本的过采样参数。对少类样本采取不同的过采样策略,实现训练集样本的均衡。使用均衡的训练集建立支持向量机模型,实现对印刷套准状态的识别。结果实验结果表明,文中方法在不同非均衡印刷数据集上,获得的平均分类准确率几何平均数Gmean为0.8507,召回率Re为0.7192,ROC曲线下面积A为0.8549。结论文中方法在不同非均衡印刷套准数据集上的分类性能要优于实验中的SMOTE,IS和SVM等方法。 展开更多
关键词 非均衡数据 印刷套准 灰度行程矩阵 过采样
下载PDF
Prediction of Strain Rate of Aluminum/Silicon Carbide Using Gray Level Run-Length Matrices
5
作者 Ahmad E. Eladawi SaadA. A. Sayed +1 位作者 Hammad T. Elmetwally Tamer O. Diab 《Journal of Energy and Power Engineering》 2017年第5期355-361,共7页
The microstructural processes occurring in metals and alloys during hot deformation are: DRX (dynamic recrystallization), superplastic deformation, dynamic recovery, wedge cracking, void formation, inter-crystallin... The microstructural processes occurring in metals and alloys during hot deformation are: DRX (dynamic recrystallization), superplastic deformation, dynamic recovery, wedge cracking, void formation, inter-crystalline cracking, prior particle boundary (FFB) cracking, and flow instability processes. Deformation characteristics of materials are interpreted as follows: in the low temperature (T≤0.25 of melting temperature) and high strain rate regime of 10 to 100 s-1, void formation occurs at hard particles and leads to ductile fracture. Many researchers used the currently defined statistical approaches to characterize images and extract useful information from the captured images. For more suitable of specific tasks, some researchers are introducing new texture features. HOS (higher-order statistics) estimate properties of three or more pixels occurring at specific locations relative to each other. GLRLMs (gray level run-length matrices) are popular method of HOS to extract texture features. This paper deals with texture features of GLRLM to predict strain rate values for Aluminum/Silicon Carbide. 展开更多
关键词 Image processing computer vision glrlms texture features strain rate.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部