期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Wall-Crossing Formula and the Invariance of GLSM Correlation Functions
1
作者 Gang Tian Guangbo Xu 《Peking Mathematical Journal》 2020年第2期235-291,共57页
In this paper,we prove a wall-crossing formula,a crucial ingredient needed to prove that the correlation function of gauged linear-model is independent of the choice of perturbations.
关键词 Gauged linear sigma model(glsm) Wall-crossing Virtual cycle
原文传递
群组AHP排序的几何最小二乘方法 被引量:1
2
作者 王应明 《中国管理科学》 CSSCI 1996年第3期40-47,共8页
本文在文献[1]不完全AHP排序方法的基础上给出群组AHP排序的几何最小二乘方法(GLSM)。鉴于不同专家所给判断矩阵质量上的差异,GLSM排序方法对群组AHP进行不同程度的加权处理,并进行群组一致性检验。
关键词 群组AHP 排序 最小二乘法 glsm
下载PDF
电喷汽油机油膜效应动态参数辨识精度的研究 被引量:3
3
作者 李顶根 李小中 《内燃机学报》 EI CAS CSCD 北大核心 2010年第5期453-458,共6页
为了深入研究汽油机进气道油膜效应,以提高瞬态工况空燃比控制精度,采用燃油补偿标定法对X(燃油沉积系数)和τ(油膜质量蒸发时间常数)进行标定试验;基于提高辨识精度,建立了广义最小二乘法辨识X和τ的模型,深入分析了采样周期T和采样点... 为了深入研究汽油机进气道油膜效应,以提高瞬态工况空燃比控制精度,采用燃油补偿标定法对X(燃油沉积系数)和τ(油膜质量蒸发时间常数)进行标定试验;基于提高辨识精度,建立了广义最小二乘法辨识X和τ的模型,深入分析了采样周期T和采样点数N对广义最小二乘法的辨识精度的影响,确定了合理的采样周期和采样点数;通过采样试验获得空燃比、喷油流量、转速和空气流量等参数,采用最小二乘法和广义最小二乘法辨识X和τ值,将两种算法辨识结果与试验标定值对比分析。结果表明:最小二乘法辨识的τ值最大偏差超过0.3,s,X辨识值中最大误差为8.6%。采用广义最小二乘法辨识,τ辨识值最大偏差小于0.1,s,X辨识值最大误差为2.3%,对采样要求也不需像最小二乘法那样要求严格。 展开更多
关键词 汽油机 油膜效应 广义最小二乘法 参数辨识
下载PDF
The Moduli Space in the Gauged Linear Sigma Model
4
作者 Huijun FAN Tyler JARVIS Yongbin RUAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第4期913-936,共24页
This is a survey article for the mathematical theory of Witten's Gauged Linear Sigma Model, as developed recently by the authors. Instead of developing the theory in the most general setting, in this paper the aut... This is a survey article for the mathematical theory of Witten's Gauged Linear Sigma Model, as developed recently by the authors. Instead of developing the theory in the most general setting, in this paper the authors focus on the description of the moduli. 展开更多
关键词 Landau-Ginzburg CALABI-YAU Gromov-Witten glsm MODULI Phase Variation of geometric invariant theory Symplectic reduction
原文传递
Nonabelian Gauged Linear Sigma Model
5
作者 Yongbin RUAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第4期963-984,共22页
The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago. Since then, it has been investigated extensively in physics by Hori and others. Recently, an algebro... The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago. Since then, it has been investigated extensively in physics by Hori and others. Recently, an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications. The abelian GLSM was relatively better understood and is the focus of current mathematical investigation. In this article, the author would like to look over the horizon and consider the nonabelian GLSM. The nonabelian case possesses some new features unavailable to the ahelian GLSM. To aid the future mathematical development, the author surveys some of the key problems inspired by physics in the nonabelian GLSM. 展开更多
关键词 GIT quotient Stability condition glsm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部