This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations a...This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications.展开更多
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o...Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .展开更多
GM(1, 1) is generally used in Grey System Theory which constructs an Ordinary Differential Equation for given se-ries. It is effective for monotone series, and its simulating effect is good and error is small. However...GM(1, 1) is generally used in Grey System Theory which constructs an Ordinary Differential Equation for given se-ries. It is effective for monotone series, and its simulating effect is good and error is small. However, If the series dosen’ t havea property of monotone, the simulating effect of GM(1,1) is not fine, and its error gets bigger. In this paper, we use GM(2,1) to handle the oxcillation series, which uses the Method of Minimum Squares in determining the uncertain parameters.展开更多
To create a new prediction model, the unbiased GM (1,1) model is optimized by the five-point slide method in this paper. Then, based on the occurrence areas of dce blast in Enshi District during 1995 -2004, the new ...To create a new prediction model, the unbiased GM (1,1) model is optimized by the five-point slide method in this paper. Then, based on the occurrence areas of dce blast in Enshi District during 1995 -2004, the new model and unbiased GM (1, 1 ) model are applied to predict the occurrence areas of rice blast during 2005 -2010. Predicting outcomes show that the prediction accuracy of five-point unbiased sliding optimized GM (1, 1 ) model is higher than the unbiased GM (1,1) model. Finally, combined with the prediction results, the author provides some suggestion for Enshi District in the prevention and control of rice blast in 2010.展开更多
文摘This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications.
文摘Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .
文摘GM(1, 1) is generally used in Grey System Theory which constructs an Ordinary Differential Equation for given se-ries. It is effective for monotone series, and its simulating effect is good and error is small. However, If the series dosen’ t havea property of monotone, the simulating effect of GM(1,1) is not fine, and its error gets bigger. In this paper, we use GM(2,1) to handle the oxcillation series, which uses the Method of Minimum Squares in determining the uncertain parameters.
基金Supported by Science Research Project of Department of Education of Hubei Province (B20092901)~~
文摘To create a new prediction model, the unbiased GM (1,1) model is optimized by the five-point slide method in this paper. Then, based on the occurrence areas of dce blast in Enshi District during 1995 -2004, the new model and unbiased GM (1, 1 ) model are applied to predict the occurrence areas of rice blast during 2005 -2010. Predicting outcomes show that the prediction accuracy of five-point unbiased sliding optimized GM (1, 1 ) model is higher than the unbiased GM (1,1) model. Finally, combined with the prediction results, the author provides some suggestion for Enshi District in the prevention and control of rice blast in 2010.