This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient ou...This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient outputs.The increased outputs are solved by linear programming using data envelopment analysis efficiency theories,wherein a new sample is introduced whose inputs are equal to the budget in the issue No.n + 1 and outputs are forecasted by the GM(1,N) model.The shortcoming in the existing methods that the forecasted efficient outputs may be less than the possible actual outputs according to developing trends of input-output rate in the periods of pre-n is overcome.The new prediction method provides decision-makers with more decisionmaking information,and the initial conditions are easy to be given.展开更多
In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (resear...In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (research and development) personnel FTE (Full Time Equivalent), intramural expenditure for R&D and Patent Application Amount. According to the grey correlation coefficient, screening of grey GM(1,N) prediction variables, the grey prediction model is established. Meanwhile, time series model and GM(1,1) model are established for patent applications and R&D personnel equivalent FTE. By comparing the simulating results with the real data, the absolute relative error of prediction models is less than 10%. The results of the prediction model are tested. In order to improve the prediction accuracy, the mean values of the predicted values of the two models are brought into the GM(1,N) model to predict the number of scientific and technical personnel in Beijing during 2015-2025. Forecast results show that the number of science and technology personnel in Beijing will grow with exponential growth trend in the next ten years, which has a certain reference value for predicting the science and technology activities and formulating the policy in Beijing.展开更多
基金supported by the Research Start Funds for Introducing High-level Talents of North China University of Water Resources and Electric Power
文摘This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient outputs.The increased outputs are solved by linear programming using data envelopment analysis efficiency theories,wherein a new sample is introduced whose inputs are equal to the budget in the issue No.n + 1 and outputs are forecasted by the GM(1,N) model.The shortcoming in the existing methods that the forecasted efficient outputs may be less than the possible actual outputs according to developing trends of input-output rate in the periods of pre-n is overcome.The new prediction method provides decision-makers with more decisionmaking information,and the initial conditions are easy to be given.
文摘In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (research and development) personnel FTE (Full Time Equivalent), intramural expenditure for R&D and Patent Application Amount. According to the grey correlation coefficient, screening of grey GM(1,N) prediction variables, the grey prediction model is established. Meanwhile, time series model and GM(1,1) model are established for patent applications and R&D personnel equivalent FTE. By comparing the simulating results with the real data, the absolute relative error of prediction models is less than 10%. The results of the prediction model are tested. In order to improve the prediction accuracy, the mean values of the predicted values of the two models are brought into the GM(1,N) model to predict the number of scientific and technical personnel in Beijing during 2015-2025. Forecast results show that the number of science and technology personnel in Beijing will grow with exponential growth trend in the next ten years, which has a certain reference value for predicting the science and technology activities and formulating the policy in Beijing.