The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and emp...The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and employs a combination of the Newton-Raphson method and the Krylov subspace method.Moreover,the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integration.The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata′s lowerbranch steady solution of plane Couette flow,which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.展开更多
提出了一种基于m次重启的简化广义最小残差法(simpler generalized minimal residual algorithm of m times restart,SGMRES(m))的电力系统暂态稳定仿真新算法,即采用SGMRES(m)方法对暂态稳定仿真中形成的线性方程组进行求解,通过修正...提出了一种基于m次重启的简化广义最小残差法(simpler generalized minimal residual algorithm of m times restart,SGMRES(m))的电力系统暂态稳定仿真新算法,即采用SGMRES(m)方法对暂态稳定仿真中形成的线性方程组进行求解,通过修正标准正交基的生成过程,使得m阶上Hessenberg矩阵成为上三角矩阵。这样,只要通过简单的上三角线性方程组的求解即可求得解的修正量,避免了求解广义最小残差法每次迭代中的最小二乘问题,从而有效地减少了计算量。为进一步加快计算速度,文中算法进一步结合了伪牛顿策略和不完全LU预处理技术。多个算例的计算结果表明,所提出方法是有效的。展开更多
文摘The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and employs a combination of the Newton-Raphson method and the Krylov subspace method.Moreover,the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integration.The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata′s lowerbranch steady solution of plane Couette flow,which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.
文摘提出了一种基于m次重启的简化广义最小残差法(simpler generalized minimal residual algorithm of m times restart,SGMRES(m))的电力系统暂态稳定仿真新算法,即采用SGMRES(m)方法对暂态稳定仿真中形成的线性方程组进行求解,通过修正标准正交基的生成过程,使得m阶上Hessenberg矩阵成为上三角矩阵。这样,只要通过简单的上三角线性方程组的求解即可求得解的修正量,避免了求解广义最小残差法每次迭代中的最小二乘问题,从而有效地减少了计算量。为进一步加快计算速度,文中算法进一步结合了伪牛顿策略和不完全LU预处理技术。多个算例的计算结果表明,所提出方法是有效的。