This paper is part of a research under enhancement since 2001, in which the main objective is to measure small dynamic displacements by analysis of L1 GPS carrier frequency with 1575.42 MHz—wavelength 19.05 cm, under...This paper is part of a research under enhancement since 2001, in which the main objective is to measure small dynamic displacements by analysis of L1 GPS carrier frequency with 1575.42 MHz—wavelength 19.05 cm, under an adaptive method for collecting data and filtering techniques. This method, named Phase Residual Method (PRM) is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this work it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs. In order to improve the ability to detect millimetric displacements, two filtering techniques are introduced. The first one is the autocorrelation that reduces the phase noise with random time behavior. The other one is the running mean to separate low frequency from the high frequency phase sources. Two trials are presented to verify the proposed method and filtering techniques applied. One simulates a 2.5 millimeter vertical GPS antenna displacement and the second using the data collected during a bridge dynamic load test. The results show a good consistency to detect millimetric oscillations from L1 frequency and filtering techniques.展开更多
The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase...The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase, and navigation to be interrupted. To solve the above problems, a novel signal processing algorithm is proposed based on the GPS L1 software receiver during strong ionospheric scintillation using the multi-channel intermediate frequency(IF) data sampling system. Tens of thousands of fading events are obtained based on the signal intensity measurement. The amplitude fading characteristics in the lowlatitude region are analyzed,including fading duration, time separation between fades and the numbers of signal intensity fading events. The fading thresholds are set to be 15 and 10 dB, respectively. The main fading time is very short in- 15 dB fading threshold, which generally is less than 20 ms. The main time separation between fades is less than 2 s in a single one-hour period from the time 23: 00 to 24: 00. Therefore, it has the characteristic of a short reacquisition time for the receiver designed to reduce the probability of simultaneous loss of lock for some satellites.Subsequently, the acquisition, tracking and PVT(position,velocity and time) calculations are completed by the customdesigned software receiver. The results show that the impact analysis of ionospheric scintillation on GPS amplitude attenuation in the lowlatitude region is helpful for designing the advanced tracking algorithm and to improve the robustness and accuracy of the GPS receiver.展开更多
Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp 120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techn...Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp 120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gpl20 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.展开更多
文摘This paper is part of a research under enhancement since 2001, in which the main objective is to measure small dynamic displacements by analysis of L1 GPS carrier frequency with 1575.42 MHz—wavelength 19.05 cm, under an adaptive method for collecting data and filtering techniques. This method, named Phase Residual Method (PRM) is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this work it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs. In order to improve the ability to detect millimetric displacements, two filtering techniques are introduced. The first one is the autocorrelation that reduces the phase noise with random time behavior. The other one is the running mean to separate low frequency from the high frequency phase sources. Two trials are presented to verify the proposed method and filtering techniques applied. One simulates a 2.5 millimeter vertical GPS antenna displacement and the second using the data collected during a bridge dynamic load test. The results show a good consistency to detect millimetric oscillations from L1 frequency and filtering techniques.
基金The National Natural Science Foundation for Young Scholars(No.51405203)Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-Aged Teachers and Presidentsthe Natural Science Foundation of Jiangsu Province(No.BK20160699)
文摘The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase, and navigation to be interrupted. To solve the above problems, a novel signal processing algorithm is proposed based on the GPS L1 software receiver during strong ionospheric scintillation using the multi-channel intermediate frequency(IF) data sampling system. Tens of thousands of fading events are obtained based on the signal intensity measurement. The amplitude fading characteristics in the lowlatitude region are analyzed,including fading duration, time separation between fades and the numbers of signal intensity fading events. The fading thresholds are set to be 15 and 10 dB, respectively. The main fading time is very short in- 15 dB fading threshold, which generally is less than 20 ms. The main time separation between fades is less than 2 s in a single one-hour period from the time 23: 00 to 24: 00. Therefore, it has the characteristic of a short reacquisition time for the receiver designed to reduce the probability of simultaneous loss of lock for some satellites.Subsequently, the acquisition, tracking and PVT(position,velocity and time) calculations are completed by the customdesigned software receiver. The results show that the impact analysis of ionospheric scintillation on GPS amplitude attenuation in the lowlatitude region is helpful for designing the advanced tracking algorithm and to improve the robustness and accuracy of the GPS receiver.
基金supported by the National Natural Science Foundation of China,No.81171134 and 81471235a grant from the Introducing Talents of Discipline to Universities,No.B14036+4 种基金a grant from the College Students’Extracurricular Scientific Innovation and Entrepreneurial Activity Research Topic of Jinan University Challenge Cup,No.(2013)27 and (2014)16a grant from the College Students’Extracurricular Scientific Innovation and Entrepreneurial Activity Research Topic of Jinan University in China,No.201410559079,1055914162 and CX14261a grant from the National Basic Research Program of China(973 Program),No.2011CB707501the Science and Technology Foundation of Guangdong Province in China,No.2010B030700016the Natural Science Foundation of Guangdong Province in China,No.2014A030313360
文摘Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp 120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gpl20 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.