As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am...As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.展开更多
Based on the driver surveillance video data and controller area network(CAN)data,the methods of studying commercial vehicles’driving behavior is relatively advanced.However,these methods have difficulty in covering p...Based on the driver surveillance video data and controller area network(CAN)data,the methods of studying commercial vehicles’driving behavior is relatively advanced.However,these methods have difficulty in covering private vehicles.Naturalistic driving studies have disadvantages of small sample size and high cost,one new driving behavior evaluation method using massive vehicle trajectory data is put forward.An automatic encoding machine is used to reduce the noise of raw data,and then driving dynamics and self-organizing mapping(SOM)classification are used to give thresholds or the judgement method of overspeed,rapid speed change,rapid turning and rapid lane changing.The proportion of different driving behaviors and typical dangerous driving behaviors is calculated,then the temporal and spatial distribution of drivers’driving behavior and the driving behavior characteristics on typical roads are analyzed.Driving behaviors on accident-prone road sections and normal road sections are compared.Results show that in Shenzhen,frequent lane changing and overspeed are the most common unsafe driving behaviors;16.1%drivers have relatively aggressive driving behavior;the proportion of dangerous driving behavior is higher outside the original economic special zone;dangerous driving behavior is highly correlated with traffic accident frequency.展开更多
The aim of the paper is to evaluate the impacts of bus lane on bus travel time reliability.The data used are the Geographic Positioning System(GPS) data of two bus lines running parallel streets in Shenzhen,China,one ...The aim of the paper is to evaluate the impacts of bus lane on bus travel time reliability.The data used are the Geographic Positioning System(GPS) data of two bus lines running parallel streets in Shenzhen,China,one of which is a bus lane and the other is a regular lane.Two linear regression models are developed to evaluate the influence of bus lane which has a separated right of way.Other factors including running direction,day of week,time of day,dwell time,and delay at the start point are also considered in the model.Without published time tables,coefficient of variance(CV) of travel time is employed to explore the impacts of bus lane.The results indicate that bus lane can save 22.0% of travel time,reduce 11.5% of the CV of travel time,and decrease the variance of headway by 17.4%.The analysis on bus travel time reliability could help operators and drivers improve the quality of transit service.It also sheds light on how to assess the effectiveness of bus lane for transit planners and service operators.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.41431070,41174016,41274026,41274024,41321063)National Key Basic Research Program of China(973 Program,2012CB957703)+1 种基金CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-05)The Chinese Academy of Sciences
文摘As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.
基金The National Natural Science Foundation of China(No.71641005)the National Key Research and Development Program of China(No.2018YFB1601105)
文摘Based on the driver surveillance video data and controller area network(CAN)data,the methods of studying commercial vehicles’driving behavior is relatively advanced.However,these methods have difficulty in covering private vehicles.Naturalistic driving studies have disadvantages of small sample size and high cost,one new driving behavior evaluation method using massive vehicle trajectory data is put forward.An automatic encoding machine is used to reduce the noise of raw data,and then driving dynamics and self-organizing mapping(SOM)classification are used to give thresholds or the judgement method of overspeed,rapid speed change,rapid turning and rapid lane changing.The proportion of different driving behaviors and typical dangerous driving behaviors is calculated,then the temporal and spatial distribution of drivers’driving behavior and the driving behavior characteristics on typical roads are analyzed.Driving behaviors on accident-prone road sections and normal road sections are compared.Results show that in Shenzhen,frequent lane changing and overspeed are the most common unsafe driving behaviors;16.1%drivers have relatively aggressive driving behavior;the proportion of dangerous driving behavior is higher outside the original economic special zone;dangerous driving behavior is highly correlated with traffic accident frequency.
文摘The aim of the paper is to evaluate the impacts of bus lane on bus travel time reliability.The data used are the Geographic Positioning System(GPS) data of two bus lines running parallel streets in Shenzhen,China,one of which is a bus lane and the other is a regular lane.Two linear regression models are developed to evaluate the influence of bus lane which has a separated right of way.Other factors including running direction,day of week,time of day,dwell time,and delay at the start point are also considered in the model.Without published time tables,coefficient of variance(CV) of travel time is employed to explore the impacts of bus lane.The results indicate that bus lane can save 22.0% of travel time,reduce 11.5% of the CV of travel time,and decrease the variance of headway by 17.4%.The analysis on bus travel time reliability could help operators and drivers improve the quality of transit service.It also sheds light on how to assess the effectiveness of bus lane for transit planners and service operators.