Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally us...Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.展开更多
In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integra...In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integrated system ofGPSand INS. The closed-loop Kalm an Filter and U-D discom pose algorithm have been used. The sim ulation results associated to four integrated m odels of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta- range synthesis have been provided, and the actualeffects of variously integrated m odels have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled m odelis the m osteffective to im provethe coupled system perform anceand the individualdelta-rangecoupled m od- elhad betterbe avoided in application.展开更多
The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS output...The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS outputs and the offset of GPS and INS, state equations and observations are designed to perform the calculation and improve the navigation accuracy. An example shows that with the method the reliable navigation parameters have been obtained.展开更多
Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional metho...Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional method which is used for the navigation system to estimate the navigational parameters, when INS measurements are fused with GPS data. However, new generation of INS, which relies on MEMS (micro-electro-mechanical systems) based low-cost IMUs (inertial measurement units) for the land navigation systems, decreases the accuracy and the robustness of navigation system due to their inherent errors. This paper provides a new method for fusing the low-cost IMU and GPS measurements. The proposed method is based on KF aided by AF1S (adaptive fuzzy inference systems) as a promising solution to overcome the mentioned problems. The results of this study show the efficiency of the proposed method to reduce the navigation system errors in comparison with KF alone.展开更多
The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation acc...The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.展开更多
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es...Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.展开更多
Continuous vehicle tracking as well as detecting accidents, are significant services that are needed by many industries including insurance and vehicle rental companies. The main goal of this paper is to provide metho...Continuous vehicle tracking as well as detecting accidents, are significant services that are needed by many industries including insurance and vehicle rental companies. The main goal of this paper is to provide methods to detect the position of car accident. The models consider GPS/INS-based navigation algorithm, calibration of navigational sensors, a de-nosing method as long as vehicle accident, expressed by a set of raw measurements which are obtained from various environmental sensors. In addition, the location-based accident detection model is tested in different scenarios. The results illustrate that under harsh environments with no GPS signal, location of accident can be detected. Also results confirm that calibration of sensors has an important role in position correction algorithm. Finally, the results present that the proposed accident detection algorithm can recognize accidents and related its positions.展开更多
基金supported by the National Natural Science Foundation of China (6083400560775001)
文摘Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.
文摘In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integrated system ofGPSand INS. The closed-loop Kalm an Filter and U-D discom pose algorithm have been used. The sim ulation results associated to four integrated m odels of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta- range synthesis have been provided, and the actualeffects of variously integrated m odels have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled m odelis the m osteffective to im provethe coupled system perform anceand the individualdelta-rangecoupled m od- elhad betterbe avoided in application.
基金Supported by the Scientific Research Foundation for ROCS,SEMJiangxi Education Bureau Project(No.200525) .
文摘The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS outputs and the offset of GPS and INS, state equations and observations are designed to perform the calculation and improve the navigation accuracy. An example shows that with the method the reliable navigation parameters have been obtained.
文摘Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional method which is used for the navigation system to estimate the navigational parameters, when INS measurements are fused with GPS data. However, new generation of INS, which relies on MEMS (micro-electro-mechanical systems) based low-cost IMUs (inertial measurement units) for the land navigation systems, decreases the accuracy and the robustness of navigation system due to their inherent errors. This paper provides a new method for fusing the low-cost IMU and GPS measurements. The proposed method is based on KF aided by AF1S (adaptive fuzzy inference systems) as a promising solution to overcome the mentioned problems. The results of this study show the efficiency of the proposed method to reduce the navigation system errors in comparison with KF alone.
基金Supported by the National Natural Science Foundation of China(61502257,41304031)
文摘The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.
基金supported by the Fundamental Research Funds for the Central Universities(xzy022020045)the National Natural Science Foundation of China(61976175)。
文摘Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.
文摘Continuous vehicle tracking as well as detecting accidents, are significant services that are needed by many industries including insurance and vehicle rental companies. The main goal of this paper is to provide methods to detect the position of car accident. The models consider GPS/INS-based navigation algorithm, calibration of navigational sensors, a de-nosing method as long as vehicle accident, expressed by a set of raw measurements which are obtained from various environmental sensors. In addition, the location-based accident detection model is tested in different scenarios. The results illustrate that under harsh environments with no GPS signal, location of accident can be detected. Also results confirm that calibration of sensors has an important role in position correction algorithm. Finally, the results present that the proposed accident detection algorithm can recognize accidents and related its positions.