In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of...In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of interested genes, GRP 1 8 promoter was amplified by PCR from Chinese bean genomic DNA. The intermediate vector was constructed by inserting vascular specific expression promoter of GRP 1 8 gene in vector pBI 101. The regenerated tobacco plants obtained were analyzed by PCR to select the putative transgenic plants. The histochemical localization of GUS( β D glucosidase) activity indicates that as for that of GRP 1 8 promoter we can confer the vascular specific expression of GUS gene.展开更多
Glycine-rich proteins (GRPs) belong to a kind of important structural proteins of plant cell walls. The expression of GRP genes is regulated spatially and developmentally as well as by various environmental stresses, ...Glycine-rich proteins (GRPs) belong to a kind of important structural proteins of plant cell walls. The expression of GRP genes is regulated spatially and developmentally as well as by various environmental stresses, thus providing a good model for the study of plant gene expres-sion. We obtained the genomic sequence of a new GRP gene (Osgrp-2) from a rice genomic li-brary. The transcription start site of Osgrp-2 was determined by 5’-rapid amplification of cDNA ends (RACE) and a 2.4-kb promoter sequence was thus delimited. The spatial and developmental expression pattern as well as the wound-inducible character of Osgrp-2 in rice plants was ana-lyzed in detail. Furthermore, the gene was mapped onto rice chromosome 10 by analysis of re-striction fragment length polymorphism (RFLP).展开更多
基金Supported by the National Natural Science Foundation of China(No.39730 35 0 ) .
文摘In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of interested genes, GRP 1 8 promoter was amplified by PCR from Chinese bean genomic DNA. The intermediate vector was constructed by inserting vascular specific expression promoter of GRP 1 8 gene in vector pBI 101. The regenerated tobacco plants obtained were analyzed by PCR to select the putative transgenic plants. The histochemical localization of GUS( β D glucosidase) activity indicates that as for that of GRP 1 8 promoter we can confer the vascular specific expression of GUS gene.
文摘Glycine-rich proteins (GRPs) belong to a kind of important structural proteins of plant cell walls. The expression of GRP genes is regulated spatially and developmentally as well as by various environmental stresses, thus providing a good model for the study of plant gene expres-sion. We obtained the genomic sequence of a new GRP gene (Osgrp-2) from a rice genomic li-brary. The transcription start site of Osgrp-2 was determined by 5’-rapid amplification of cDNA ends (RACE) and a 2.4-kb promoter sequence was thus delimited. The spatial and developmental expression pattern as well as the wound-inducible character of Osgrp-2 in rice plants was ana-lyzed in detail. Furthermore, the gene was mapped onto rice chromosome 10 by analysis of re-striction fragment length polymorphism (RFLP).