To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed a...To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.展开更多
Objective:To explore the efficacy and potential mechanisms of the ethanol extract of Abelmoschus manihot(L.)Medic in contrast-induced nephropathy(CIN).Methods:CIN rat models and human renal proximal tubular cells(HK-2...Objective:To explore the efficacy and potential mechanisms of the ethanol extract of Abelmoschus manihot(L.)Medic in contrast-induced nephropathy(CIN).Methods:CIN rat models and human renal proximal tubular cells(HK-2)with iopromide-induced injury were employed to mimic CIN conditions.The effect of Abelmoschus manihot extract on the rat models and HK-2 cells was evaluated.In rat models,kidney function,histology,oxidative stress and apoptosis were determined.In HK-2 cells,cell viability,apoptosis,mitochondrial membrane potential,and endoplasmic reticulum stress were assessed.Results:Abelmoschus manihot extract significantly improved structural and functional impairments in the kidneys of CIN rats.Additionally,the extract effectively mitigated the decline in cellular viability and reduced iopromide-induced oxidative stress and lipid peroxidation.Mechanistic investigations revealed that Abelmoschus manihot extract prominently attenuated acute endoplasmic reticulum stress-mediated apoptosis by downregulating GRP78 and CHOP protein levels.Conclusions:Abelmoschus manihot extract can be used as a promising therapeutic and preventive agent in the treatment of CIN.展开更多
基金Project(51278216) supported by the National Natural Science Foundation of ChinaProject(20091341) supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(HF-08-01-2011-240) supported by the Graduates’ Innovation Fund of Huazhong University of Science and Technology,China
文摘To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.
基金supported by the National Natural Science Foundation of China(No.81973762).
文摘Objective:To explore the efficacy and potential mechanisms of the ethanol extract of Abelmoschus manihot(L.)Medic in contrast-induced nephropathy(CIN).Methods:CIN rat models and human renal proximal tubular cells(HK-2)with iopromide-induced injury were employed to mimic CIN conditions.The effect of Abelmoschus manihot extract on the rat models and HK-2 cells was evaluated.In rat models,kidney function,histology,oxidative stress and apoptosis were determined.In HK-2 cells,cell viability,apoptosis,mitochondrial membrane potential,and endoplasmic reticulum stress were assessed.Results:Abelmoschus manihot extract significantly improved structural and functional impairments in the kidneys of CIN rats.Additionally,the extract effectively mitigated the decline in cellular viability and reduced iopromide-induced oxidative stress and lipid peroxidation.Mechanistic investigations revealed that Abelmoschus manihot extract prominently attenuated acute endoplasmic reticulum stress-mediated apoptosis by downregulating GRP78 and CHOP protein levels.Conclusions:Abelmoschus manihot extract can be used as a promising therapeutic and preventive agent in the treatment of CIN.