GaInP/GaAs/Ge triple-junction solar cells were irradiated with 50 keV and 100 keV protons at fluences of 5 × 10^10 cm^-2, 1 × 10^11 cm^-2,1 × 10^12 cm^-2, and 1 × 10^13 cm^-2. Their performance deg...GaInP/GaAs/Ge triple-junction solar cells were irradiated with 50 keV and 100 keV protons at fluences of 5 × 10^10 cm^-2, 1 × 10^11 cm^-2,1 × 10^12 cm^-2, and 1 × 10^13 cm^-2. Their performance degradation is analyzed using current-voltage characteristics and spectral response measurements, and then the changes in Isc, Voc, Pmax and the spectral response of the cells are observed as functions of proton irradiation fluence and energy. The results show that the spectral response of the top cell degrades more significantly than that of the middle cell, and 100 keV proton-induced degradation rates of Isc, Voc and Pmax are larger compared with 50 keV proton irradiation.展开更多
The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of eac...The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of each subcell are obtained using different excitation lasers. The PL intensity has a fast degradation after irradiation, and decreases as the displacement damage dose increases. Furthermore, the normalized PL intensity varying with the displacement damage dose is analyzed in detail, and then the lifetime damage coefficients of the recombination centers for GaInP top-cell, GaAs mid-cell and Ge bottom-cell of the triple-junction solar cells are determined from the PL radiative efficiency.展开更多
Photoluminescence(PL) measurements are carried out to investigate the degradation of GaInP top cell and GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.0, 1.8 and 11.5 MeV electrons ...Photoluminescence(PL) measurements are carried out to investigate the degradation of GaInP top cell and GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.0, 1.8 and 11.5 MeV electrons with fluences ranging up to 3 × 10^15, 1 × 10^15 and 3 × 10^14 cm^-2, respectively. The degradation rates of PL intensity increase with the electron fluence and energy. Furthermore, the damage coefficient of minority carrier diffusion length is estimated by the PL radiative efficiency. The damage coefficient increases with the electron energy. The relation of damage coefficient to electron energy is discussed with the non-ionizing energy loss(NIEL), which shows a quadratic dependence between damage coefficient and NIEL.展开更多
引入移位损伤剂量,对国产空间用GaAs/Ge太阳电池电子的辐射效应进行研究分析。首先计算电子在电池中的非电离能损(non-ionizing energy loss,NIEL)值,再用其与电子辐射注量的相乘,得到相应的移位损伤剂量(displacement damage dose,Dd)...引入移位损伤剂量,对国产空间用GaAs/Ge太阳电池电子的辐射效应进行研究分析。首先计算电子在电池中的非电离能损(non-ionizing energy loss,NIEL)值,再用其与电子辐射注量的相乘,得到相应的移位损伤剂量(displacement damage dose,Dd),并对不同能量电子辐射下GaAs/Ge太阳电池最大输出功率Pmax随Dd的衰降曲线进行修正。分析结果表明:用Dd代替辐射注量,可使不同能量电子辐射引起的GaAs/Ge太阳电池Pmax的衰降能用单一曲线来描述。由此,通过NIEL值的计算和相对少的电子实验数据,就可确定太阳电池Pmax的衰降曲线,能够方便地预测在轨任务太阳电池的工作寿命。展开更多
基金supported by National Natural Science Foundation of China(Nos.10675023,11075018)the Fundamental Research Funds for the Central Universities of China
文摘GaInP/GaAs/Ge triple-junction solar cells were irradiated with 50 keV and 100 keV protons at fluences of 5 × 10^10 cm^-2, 1 × 10^11 cm^-2,1 × 10^12 cm^-2, and 1 × 10^13 cm^-2. Their performance degradation is analyzed using current-voltage characteristics and spectral response measurements, and then the changes in Isc, Voc, Pmax and the spectral response of the cells are observed as functions of proton irradiation fluence and energy. The results show that the spectral response of the top cell degrades more significantly than that of the middle cell, and 100 keV proton-induced degradation rates of Isc, Voc and Pmax are larger compared with 50 keV proton irradiation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10675023,11075018,11375028 and 11675020the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20120003110011
文摘The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of each subcell are obtained using different excitation lasers. The PL intensity has a fast degradation after irradiation, and decreases as the displacement damage dose increases. Furthermore, the normalized PL intensity varying with the displacement damage dose is analyzed in detail, and then the lifetime damage coefficients of the recombination centers for GaInP top-cell, GaAs mid-cell and Ge bottom-cell of the triple-junction solar cells are determined from the PL radiative efficiency.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675020,11375028,11075018 and 10675023
文摘Photoluminescence(PL) measurements are carried out to investigate the degradation of GaInP top cell and GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.0, 1.8 and 11.5 MeV electrons with fluences ranging up to 3 × 10^15, 1 × 10^15 and 3 × 10^14 cm^-2, respectively. The degradation rates of PL intensity increase with the electron fluence and energy. Furthermore, the damage coefficient of minority carrier diffusion length is estimated by the PL radiative efficiency. The damage coefficient increases with the electron energy. The relation of damage coefficient to electron energy is discussed with the non-ionizing energy loss(NIEL), which shows a quadratic dependence between damage coefficient and NIEL.
文摘引入移位损伤剂量,对国产空间用GaAs/Ge太阳电池电子的辐射效应进行研究分析。首先计算电子在电池中的非电离能损(non-ionizing energy loss,NIEL)值,再用其与电子辐射注量的相乘,得到相应的移位损伤剂量(displacement damage dose,Dd),并对不同能量电子辐射下GaAs/Ge太阳电池最大输出功率Pmax随Dd的衰降曲线进行修正。分析结果表明:用Dd代替辐射注量,可使不同能量电子辐射引起的GaAs/Ge太阳电池Pmax的衰降能用单一曲线来描述。由此,通过NIEL值的计算和相对少的电子实验数据,就可确定太阳电池Pmax的衰降曲线,能够方便地预测在轨任务太阳电池的工作寿命。