Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural a...Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural and electrical properties of nonpolar p-type GaN films were investigated in detail. It is found that all the surface morphology, crystalline quality, strains, and electrical properties of nonpolar a-plane p-type GaN films are interconnected, and are closely related to the Mg-doping temperature. This means that a proper performance of nonpolar p-type GaN can be expected by optimizing the Mg-doping temperature. In fact, a hole concentration of 1.3×10^(18)cm^(-3), a high Mg activation efficiency of 6.5%,an activation energy of 114 me V for Mg acceptor, and a low anisotropy of 8.3% in crystalline quality were achieved with a growth temperature of 990℃. This approach to optimizing the Mg-doping temperature of the nonpolar a-plane p-type GaN film provides an effective way to fabricate high-efficiency optoelectronic devices in the future.展开更多
Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path...Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation.展开更多
An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition ...An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition technology was adopted to grow GaN film on an α-Al2O3 substrate. X-ray diffraction (XRD) analyses showed that the peak of GaN (0002) was at 20 = 34.48°, being sharper and more intense with the increase in the Ne: trimethylgallium(TMG) flow ratio. The results demonstrate that the electron cyclotron resonance-plasma enchanced met- alorganic chemical vapor deposition (ECR-MOPECVD) technology is evidently advantageous for the deposition of GaN film at a low growth temperature.展开更多
A novel and simple method was employed to synthesize GaN films on porous silicon (PS) substrates, GaN films were obtained through the reaction between NH3 and Ga2O3 films deposited on the substrates with magnetron s...A novel and simple method was employed to synthesize GaN films on porous silicon (PS) substrates, GaN films were obtained through the reaction between NH3 and Ga2O3 films deposited on the substrates with magnetron sputtering. Since GaN and PS are all good materials for luminescence, it is expected to obtain some new properties from GaN on PS. The samples were analyzed with X-ray diffraction (XRD) to identify crystalline structure. Fourier transmit infrared (FFIR) spectrum was used to analyze the chemical state of the samples. The films were observed with scanning electron microscopy (SEM) and were found to consist of many big crystal grains. Photoluminescence (PL) spectrum was used to illuminate the optical property of the GaN films.展开更多
A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method, the SixNy interlayer which is deposited on an A1N buffer layer in situ is introduced...A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method, the SixNy interlayer which is deposited on an A1N buffer layer in situ is introduced to grow the GaN film laterally. The crack-free GaN film with thickness over 1.7 micron is successfully grown on an Si(lll) substrate. A synthesized GaN epilayer is characterized by X-ray diffraction (XRD), atomic force microscope (AFM), and Raman spectrum. The test results show that the GaN crystal reveals a wurtzite structure with the (0001) crystal orientation and the full width at half maximum of the X-ray diffraction curve in the (0002) plane is as low as 403 arcsec for the GaN film grown on the Si substrate with an SixNy interlayer. In addition, Raman scattering is used to study the stress in the sample. The results indicate that the SizNy interlayer can more effectively accommodate the strain energy. So the dislocation density can be reduced drastically, and the crystal quality of GaN film can be greatly improved by introducing an SixNy interlayer.展开更多
Hexagonal GaN films were prepared by nitriding Ga_2O_3 films with flowingammonia. Ga_2O_3 films were deposited on Ga-diffused Si (111) substrates by radio frequency (r.f.)magnetron sputtering. This paper have investig...Hexagonal GaN films were prepared by nitriding Ga_2O_3 films with flowingammonia. Ga_2O_3 films were deposited on Ga-diffused Si (111) substrates by radio frequency (r.f.)magnetron sputtering. This paper have investigated the change of structural properties of GaN filmsnitrided in NH_3 atmosphere at the temperatures of 850, 900, and 950 deg C for 15 min and nitridedat the temperature of 900 deg C for 10, 15, and 20 min, respectively. X-ray diffraction (XRD),scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectronspectroscopy (XPS) were used to analyze the structure, surface morphology and composition ofsynthesized samples. The results reveal that the as-grown films are polycrystalline GaN withhexagonal wurtzite structure and GaN films with the highest crystal quality can be obtained whennitrided at 900 deg C for 15 min.展开更多
CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are stu...CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.展开更多
Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of...Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence.展开更多
We investigate mosaic structure evolution of GaN films annealed for a long time at 800℃ grown on sapphire substrates by metalorganic chemical vapour deposition by high-resolution x-ray diffraction. The result show th...We investigate mosaic structure evolution of GaN films annealed for a long time at 800℃ grown on sapphire substrates by metalorganic chemical vapour deposition by high-resolution x-ray diffraction. The result show that residual stress in GaN films is relaxed by generating edge-type threading dislocations (TDs) instead of screw-type TDs. Compared to as-grown GaN films, the annealed ones have larger mean twist angles corresponding to higher density of edge-type TDs but smaller mean tilt angles corresponding to lower density of screw-type TDs films. Due to the increased edge-type TD density, the lateral coherence lengths of the annealed GaN films also decrease. The results obtained from chemical etching experiment and grazing-incidence x-ray diffraction (GIXRD) also support the proposed structure evolution.展开更多
Canti-bridged epitaxial lateral overgrowth (CBELO) of GaN is performed by metalorganic chemical vapour deposition (MOCVD) on maskless V-grooved sapphire substrates prepared by wet chemical etching with different m...Canti-bridged epitaxial lateral overgrowth (CBELO) of GaN is performed by metalorganic chemical vapour deposition (MOCVD) on maskless V-grooved sapphire substrates prepared by wet chemical etching with different mesa widths. The wing tilt usually observed in ELO is not found in the CBELO GaN with wide mesa widths, while it can be detected obviously in the GaN with narrow mesa widths. The wing tilt of CBELO GaN grown on a grooved sapphire substrate with narrow mesa can be controlled by adjusting the thickness of the nucleation layer. The dependence of the wing tilt on the nucleation layer thickness is studied. Cross-sectional scanning electron microscopy is used to characterize the geometry of the wing regions, and double crystal x-ray diffraction is used to analyse the structural characteristics and to measure the magnitude of the crystalline wing tilt. It is found that the crystalline wing tilt can be eliminated completely by first growth of a thin nucleation GaN layer then the CBELO GaN. Possible reason and the origin of the wing tilt in CBELO GaN films are also discussed.展开更多
The Epitaxial GaN thin films have been fabricated by Ion Beam Assisted Deposition (IBAD) process using nitrogen ions with hyperthermal energies on the polyimides polymer substrates. By applying with the Reflection of ...The Epitaxial GaN thin films have been fabricated by Ion Beam Assisted Deposition (IBAD) process using nitrogen ions with hyperthermal energies on the polyimides polymer substrates. By applying with the Reflection of High-Energy Electron Diffraction (RHEED), Scanning Electron Microscopy (SEM) and Quantum Design Physical Properties Measurement System, the behaviour of hexagonal GaN thin films is investigated. The result showed that the high quality of the deposited GaN layers kept appearing for many parameters depending on the temperature greatly. The behaviour of high quality of epitaxial GaN coating on the polyimide polymer substrates is a promising material for optoelectronic devices and semiconductor devices application.展开更多
Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that th...Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.展开更多
Highly c-axis-oriented GaN films were deposited on Ti coated glass substrates using low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition system(ECR-PEMOCVD)with trimethy...Highly c-axis-oriented GaN films were deposited on Ti coated glass substrates using low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition system(ECR-PEMOCVD)with trimethyl gallium(TMGa)as gallium source.The influence of TMGa flux on the properties of GaN films were systematically investigated by reflection high energy electron diffraction(RHEED),X-ray diffraction analysis(XRD),atomic force microscopy(AFM)and Raman scattering.The GaN film with small surface roughness and high c-axis preferred orientation was successfully achieved at the optimized TMGa flux of 1.0 sccm.The ohmic contact characteristic between GaN and Ti layer was clearly demonstrated by the near-linear current-voltage(I-V)curve.The GaN/Ti/glass structure has great potential to dramatically improve the scalability and reduce the cost of solid-state lighting light emitting diodes.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFB3601000 and 2021YFB3601002)the National Natural Science Foundation of China (Grant Nos.62074077,61921005,61974062,62204121,and 61904082)+1 种基金Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BE2021008-2)the China Postdoctoral Science Foundation (Grant No.2020M671441)。
文摘Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural and electrical properties of nonpolar p-type GaN films were investigated in detail. It is found that all the surface morphology, crystalline quality, strains, and electrical properties of nonpolar a-plane p-type GaN films are interconnected, and are closely related to the Mg-doping temperature. This means that a proper performance of nonpolar p-type GaN can be expected by optimizing the Mg-doping temperature. In fact, a hole concentration of 1.3×10^(18)cm^(-3), a high Mg activation efficiency of 6.5%,an activation energy of 114 me V for Mg acceptor, and a low anisotropy of 8.3% in crystalline quality were achieved with a growth temperature of 990℃. This approach to optimizing the Mg-doping temperature of the nonpolar a-plane p-type GaN film provides an effective way to fabricate high-efficiency optoelectronic devices in the future.
基金Project supported by the National Natural Science Foundation of China (Grant No.52106099)the Natural Science Foundation of Shandong Province (Grant No.ZR2022YQ57)the Taishan Scholars Program。
文摘Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation.
基金National Natural Science Foundation of China(No.10575039)the Chinese Specialized Research Fund for Doctoral Programs in Higher Education(2004057408)+1 种基金the Fund for Key Science Research Projects of Guangdong Province,China(05100534)the Science Project Foundation of Guangzhou City,China(2005Z3-D2031)
文摘An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition technology was adopted to grow GaN film on an α-Al2O3 substrate. X-ray diffraction (XRD) analyses showed that the peak of GaN (0002) was at 20 = 34.48°, being sharper and more intense with the increase in the Ne: trimethylgallium(TMG) flow ratio. The results demonstrate that the electron cyclotron resonance-plasma enchanced met- alorganic chemical vapor deposition (ECR-MOPECVD) technology is evidently advantageous for the deposition of GaN film at a low growth temperature.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 90201025 and 90301002).
文摘A novel and simple method was employed to synthesize GaN films on porous silicon (PS) substrates, GaN films were obtained through the reaction between NH3 and Ga2O3 films deposited on the substrates with magnetron sputtering. Since GaN and PS are all good materials for luminescence, it is expected to obtain some new properties from GaN on PS. The samples were analyzed with X-ray diffraction (XRD) to identify crystalline structure. Fourier transmit infrared (FFIR) spectrum was used to analyze the chemical state of the samples. The films were observed with scanning electron microscopy (SEM) and were found to consist of many big crystal grains. Photoluminescence (PL) spectrum was used to illuminate the optical property of the GaN films.
基金Project supported by the National Natural Science Foundation of China(Grant No.60806017)the Science and Technology Program of Shenzhen,China(Grant No.JC201005280455A)+2 种基金the Shenzhen University Research and Development Program, China(Grant No.201128)the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,China(Grant No.201208)the Rising Industry Development Foundation of Shenzhen,China(Grant No.JCYJ20120613162522373)
文摘A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method, the SixNy interlayer which is deposited on an A1N buffer layer in situ is introduced to grow the GaN film laterally. The crack-free GaN film with thickness over 1.7 micron is successfully grown on an Si(lll) substrate. A synthesized GaN epilayer is characterized by X-ray diffraction (XRD), atomic force microscope (AFM), and Raman spectrum. The test results show that the GaN crystal reveals a wurtzite structure with the (0001) crystal orientation and the full width at half maximum of the X-ray diffraction curve in the (0002) plane is as low as 403 arcsec for the GaN film grown on the Si substrate with an SixNy interlayer. In addition, Raman scattering is used to study the stress in the sample. The results indicate that the SizNy interlayer can more effectively accommodate the strain energy. So the dislocation density can be reduced drastically, and the crystal quality of GaN film can be greatly improved by introducing an SixNy interlayer.
基金This work was financially supported by the Science Research Foundation of Shandong Jiaotong University (No. Z200503) and the National Natural Science Foundation of China (No. 90301002).
文摘Hexagonal GaN films were prepared by nitriding Ga_2O_3 films with flowingammonia. Ga_2O_3 films were deposited on Ga-diffused Si (111) substrates by radio frequency (r.f.)magnetron sputtering. This paper have investigated the change of structural properties of GaN filmsnitrided in NH_3 atmosphere at the temperatures of 850, 900, and 950 deg C for 15 min and nitridedat the temperature of 900 deg C for 10, 15, and 20 min, respectively. X-ray diffraction (XRD),scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectronspectroscopy (XPS) were used to analyze the structure, surface morphology and composition ofsynthesized samples. The results reveal that the as-grown films are polycrystalline GaN withhexagonal wurtzite structure and GaN films with the highest crystal quality can be obtained whennitrided at 900 deg C for 15 min.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61076120 and 61106130the Natural Science Foundation and Scientific Support Plan of Jiangsu Province under Grant Nos BK2012516,BK20131072,and BE2012007
文摘CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.
基金Supported by the National Natural Science Foundation of China under Grant No 61204006the Fundamental Research Funds for the Central Universities under Grant No 7214570101the National Key Science and Technology Special Project under Grant No 2008ZX01002-002
文摘Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60376005, 60577030, 60325413, and 60444007.
文摘We investigate mosaic structure evolution of GaN films annealed for a long time at 800℃ grown on sapphire substrates by metalorganic chemical vapour deposition by high-resolution x-ray diffraction. The result show that residual stress in GaN films is relaxed by generating edge-type threading dislocations (TDs) instead of screw-type TDs. Compared to as-grown GaN films, the annealed ones have larger mean twist angles corresponding to higher density of edge-type TDs but smaller mean tilt angles corresponding to lower density of screw-type TDs films. Due to the increased edge-type TD density, the lateral coherence lengths of the annealed GaN films also decrease. The results obtained from chemical etching experiment and grazing-incidence x-ray diffraction (GIXRD) also support the proposed structure evolution.
基金Supported by the National Key Basic Research Programme of China under Grant No 2002CB311900, and the National Natural Science Foundation of China under Grant Nos 10474126 and 10574148.
文摘Canti-bridged epitaxial lateral overgrowth (CBELO) of GaN is performed by metalorganic chemical vapour deposition (MOCVD) on maskless V-grooved sapphire substrates prepared by wet chemical etching with different mesa widths. The wing tilt usually observed in ELO is not found in the CBELO GaN with wide mesa widths, while it can be detected obviously in the GaN with narrow mesa widths. The wing tilt of CBELO GaN grown on a grooved sapphire substrate with narrow mesa can be controlled by adjusting the thickness of the nucleation layer. The dependence of the wing tilt on the nucleation layer thickness is studied. Cross-sectional scanning electron microscopy is used to characterize the geometry of the wing regions, and double crystal x-ray diffraction is used to analyse the structural characteristics and to measure the magnitude of the crystalline wing tilt. It is found that the crystalline wing tilt can be eliminated completely by first growth of a thin nucleation GaN layer then the CBELO GaN. Possible reason and the origin of the wing tilt in CBELO GaN films are also discussed.
文摘The Epitaxial GaN thin films have been fabricated by Ion Beam Assisted Deposition (IBAD) process using nitrogen ions with hyperthermal energies on the polyimides polymer substrates. By applying with the Reflection of High-Energy Electron Diffraction (RHEED), Scanning Electron Microscopy (SEM) and Quantum Design Physical Properties Measurement System, the behaviour of hexagonal GaN thin films is investigated. The result showed that the high quality of the deposited GaN layers kept appearing for many parameters depending on the temperature greatly. The behaviour of high quality of epitaxial GaN coating on the polyimide polymer substrates is a promising material for optoelectronic devices and semiconductor devices application.
基金supported by the Major State Basic Research Development Program of China (Grant No. 61363)the National Natural Science Foundation of China (Grant Nos. 50772019 and 61021061)
文摘Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.
基金supported by the Opening Project of Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences(KLICM2012-01)the Fundamental Research Funds for the Central Universities(DUT13LK02,DUT13JN08)
文摘Highly c-axis-oriented GaN films were deposited on Ti coated glass substrates using low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition system(ECR-PEMOCVD)with trimethyl gallium(TMGa)as gallium source.The influence of TMGa flux on the properties of GaN films were systematically investigated by reflection high energy electron diffraction(RHEED),X-ray diffraction analysis(XRD),atomic force microscopy(AFM)and Raman scattering.The GaN film with small surface roughness and high c-axis preferred orientation was successfully achieved at the optimized TMGa flux of 1.0 sccm.The ohmic contact characteristic between GaN and Ti layer was clearly demonstrated by the near-linear current-voltage(I-V)curve.The GaN/Ti/glass structure has great potential to dramatically improve the scalability and reduce the cost of solid-state lighting light emitting diodes.