We report on a GaSb-based laterally coupled distributed feedback(LC-DFB)laser with Cr gratings operating at 2004 nm for CO_(2)detection application.Butterfly packaged with single-mode fiber pigtailed,the laser diode o...We report on a GaSb-based laterally coupled distributed feedback(LC-DFB)laser with Cr gratings operating at 2004 nm for CO_(2)detection application.Butterfly packaged with single-mode fiber pigtailed,the laser diode operates in the continuous-wave mode in a temperature range from-10℃to 60℃,with a maximum output power of 2 mW and a maximum side-mode suppression ratio over 30 dB.Wavelength-modulated absorption spectroscopy of CO_(2)demonstrates the applicability of the LC-DFB laser to tunable diode laser absorption spectroscopy.Furthermore,the diode junction temperature,which is measured by using the wavelength shift method,exhibits a maximum value of 17℃in the single-mode operation range.展开更多
Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the di...Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the distributed feedback gratings for fine tuning the lasing wavelength. Notably, elastic lasers based on three typical light-emitting molecules show com-parable lasing threshold values analogous to rigid devices and a continuous wavelength tunability of about 10 nm by mechanic-al stretching. In addition, the stretchability provides a simple solution for dynamically tuning the lasing wavelength in a spec-tral range that is challenging to achieve for inorganic counterparts. Our work has provided a simple and efficient method of fab-ricating tunable organic lasers that depend on stretchable distributed feedback gratings, demonstrating a significant step in the advancement of flexible organic optoelectronic devices.展开更多
The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epit...The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epitaxial structure,grown on Te-doped(001) oriented GaSb substrate by molecular beam epitaxy, consists of a distributed Bragg reflector(DBR), a multi-quantum-well gain region, and a window layer. An intra-cavity SiC heat spreader was attached to the gain chip for effective thermal management. A continuous-wave output power of over 1 W operating at 2.03 μm wavelength operating near room temperature was achieved using a 3% output coupler.展开更多
A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and sing...A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.展开更多
Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realiz...Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.展开更多
Internal loss is a key internal parameter for high power 1060-nm InGaAs/A1GaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum welt (QW) AIGaAs separate conf...Internal loss is a key internal parameter for high power 1060-nm InGaAs/A1GaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum welt (QW) AIGaAs separate confinement het- erostructure semiconductor laser, and the method to reduce internal loss. By light doping the n-cladding layer, and stepwise doping the p-cladding layer combined with the expanded waveguide layer, a broad area laser with internal loss of 1/cm is designed and fabricated. Ridge waveguide laser with an output power of 350 mW is obtained. The threshold current and slope efficiency near the threshold current are 20 mA and 0.8 W/A, respectively.展开更多
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive...Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.展开更多
Polarization switching (PS) dynamics and synchronization performances of two mutually coupled vertical-cavity surface-emitting lasers (VCSELs) are studied theoretically in this paper. A group of dimensionless rate...Polarization switching (PS) dynamics and synchronization performances of two mutually coupled vertical-cavity surface-emitting lasers (VCSELs) are studied theoretically in this paper. A group of dimensionless rate equations is derived to describe our model. While analysing the PS characteristics, we focus on the effects of coupling rate and frequency detuning regarding different mutual injection types. The results indicate that the x-mode injection defers the occurrence of PS, while the y-mode injection leads the PS to occur at a lower current. Strong enough polarization-selective injection can suppress the PS. Moreover, if frequency detuning is considered, the effects of polarization-selective mutual injection will be weakened. To evaluate the synchronization performance, the correlation coefficients and output dynamics of VCSELs with both pure mode and mixed mode polarizations are given. It is found that performance of complete synchronization is sensitive to the frequency mismatch but it is little affected by mixed mode polarizations, which is opposite to the case of injection-locking synchronization.展开更多
We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and s...We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and spectrum of output light,and optimizing the length of gratings,in order to reduce the mode competition effect in the device,and obtain the high power output light wave with good longitudinal mode characteristics.展开更多
The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the...The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.展开更多
Long wavelength GaSb-based quantum well lasers have been optimized for high coupling efficiency into an optical system. Two approaches were used to reduce the vertical far-field. In the first approach we showed the us...Long wavelength GaSb-based quantum well lasers have been optimized for high coupling efficiency into an optical system. Two approaches were used to reduce the vertical far-field. In the first approach we showed the use of V-shaped Weaker Waveguide in the n-cladding layer dramatically reduces vertical beam divergence without any performance degradation compared to a conventional broad-waveguide laser structure. Starting from a broad waveguide laser structure design which gives low threshold current and a large vertical far-field (VFF), the structure was modified to decrease the VFF while maintaining a low threshold-current density. In a first step the combination of a narrow optical waveguide and reduced refractive index step between the waveguide and the cladding layers reduce the VFF from 67? to 42?. The threshold current density was kept low to a value of ~190 A/cm2 for 1000 × 100 μm2 devices by careful adjustment of the doping profile in the p-type cladding layer. The insertion of a V-Shaped Weaker Waveguide in the n-cladding layer is shown to allow for further reduction of the VFF to a value as low as 35? for better light-coupling efficiency into an optical system without any degradation of the device performance. In the second approach, we showed that the use of a depressed cladding structure design also allows for the reduction of the VFF while maintaining low the threshold current density (210 A/cm2), slightly higher value compare to the first design.展开更多
The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,th...The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.展开更多
We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio th...We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .展开更多
This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show...This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.展开更多
We demonstrate the first use of single layer graphene for compressing self-Q-switching pulses in semiconductor disk lasers. The gain region of the semiconductor disk laser used InGaAs quantum wells with a central wave...We demonstrate the first use of single layer graphene for compressing self-Q-switching pulses in semiconductor disk lasers. The gain region of the semiconductor disk laser used InGaAs quantum wells with a central wavelength of 1030 nm. Due to self saturable absorption of the quantum wells, the disk laser emitted at the self-Q-switching state with a pulse width of 13 μs. By introducing the single layer graphene as a saturable absorber into the V-shaped laser cavity, the pulse width of the self-pulse was compressed to 2 μs with a lower pump power of 300 mW. As the pump power was increased, multiple pulses with the pulse width of 1.8 μs appeared. The compression factor was about 7.2.展开更多
Square microcavities, which support whispering-gallery modes with total internal reflections, can be employed as high-quality laser resonators for fabricating compact, low-threshold semiconductor lasers. In this paper...Square microcavities, which support whispering-gallery modes with total internal reflections, can be employed as high-quality laser resonators for fabricating compact, low-threshold semiconductor lasers. In this paper, we review the recent progress of square microcavity semiconductor lasers. The characteristics of confined optical modes in the square microcavities are introduced briefly. Based on the mode properties of the square microcavities, dual-mode lasers with tunable wavelength intervals are realized for generating microwave signals. Furthermore, deformed square microcavity lasers with the sidewalls replaced by circular sides are proposed and experimentally demonstrated to enhance the mode confinement and increase the dual-mode interval to the THz range. In order to further reduce the device size, metal-confined wavelength-scale square cavity lasers are also demonstrated.展开更多
We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers con...We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers constructed by a threeelement laser array with self-feedback.The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection,which are utilized as nonlinear nodes to realize the reservoirs.We show that each delayed radar probe signal can be predicted well and to synchronize with its corresponding trained reservoir,even when parameter mismatches exist between the response laser array and the driving laser array.Based on this,the three synchronous probe signals are utilized for ranging to three targets,respectively,using Hilbert transform.It is demonstrated that the relative errors for ranging can be very small and less than 0.6%.Our findings show that optical reservoir computing provides an effective way for applications of target ranging.展开更多
<正>High power broad area semiconductor lasers have found increasing applications in pumping of solid state laser systems and fiber amplifiers, frequency doubling, medical systems and material processing. Packag...<正>High power broad area semiconductor lasers have found increasing applications in pumping of solid state laser systems and fiber amplifiers, frequency doubling, medical systems and material processing. Packaging including the assembly design, process and thermal management, has a significant impact on the optical performance and reliability of a high power broad area laser. In this paper, we introduce the package structures and assembling process of 980nm broad area lasers and report the performances including output power, thermal behavior and far fields.We will report two types of high power broad area laser assemblies. One is a microchannel liquid cooled assembly and the other is a conduction cooled CT-mount assembly .Optical powers of 15W and 10W were achieved from a 980nm broad area laser with a 120μm stripe width in a microchannel liquid cooled assembly and conduction cooled CT-mount assembly, respectively .Furthermore, a high power of 6.5 W out of fiber was demonstrated from a pigtailed, fully packaged butterfly-type module without TEC ( Thermoelectric cooler ).The measurement results showed that thermal management is the key in not only improving output power, but also significantly improving beam divergence and far field distribution. The results also showed that the die attach solder can significant impact the reliability of high power broad area lasers and that indium solder is not suitable for high power laser applications due to electromigration at high current densities and high temperatures.展开更多
Using the ray trace method, three-section semiconductor lasers are studied. An analytic expression of output power for the three-section semiconductor lasers is derived for the first time. From this expression, thresh...Using the ray trace method, three-section semiconductor lasers are studied. An analytic expression of output power for the three-section semiconductor lasers is derived for the first time. From this expression, threshold condition is also obtained.展开更多
Multielectrode semiconductor lasers are studied via the ray method.The expression of the output photon number of N -electrode semiconductor lasers has been derived for the first time.When N =1 or 2,the expressio...Multielectrode semiconductor lasers are studied via the ray method.The expression of the output photon number of N -electrode semiconductor lasers has been derived for the first time.When N =1 or 2,the expression of the output photon number fits in that of one-electrode (general) or two-electrode semiconductor lasers perfectly.展开更多
基金Project supported by the Shanghai Municipal Science and Technology Major Project,China(Grant No.2017SHZDZX03)。
文摘We report on a GaSb-based laterally coupled distributed feedback(LC-DFB)laser with Cr gratings operating at 2004 nm for CO_(2)detection application.Butterfly packaged with single-mode fiber pigtailed,the laser diode operates in the continuous-wave mode in a temperature range from-10℃to 60℃,with a maximum output power of 2 mW and a maximum side-mode suppression ratio over 30 dB.Wavelength-modulated absorption spectroscopy of CO_(2)demonstrates the applicability of the LC-DFB laser to tunable diode laser absorption spectroscopy.Furthermore,the diode junction temperature,which is measured by using the wavelength shift method,exhibits a maximum value of 17℃in the single-mode operation range.
基金financial support from the National Natural Science Foundation of China (21835003, 91833304,21422402, 62274097, 21674050, 62004106)the National Key Basic Research Program of China (2014CB648300,2017YFB0404501)+11 种基金the Natural Science Foundation of Jiangsu Province (BE2019120, BK20160888)Program for Jiangsu Specially-Appointed Professor (RK030STP15001)the Six Talent Peaks Project of Jiangsu Province (TD-XCL-009)the333 Project of Jiangsu Province (BRA2017402)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB140005)China Postdoctoral Science Foundation (2020M671553)the NUPT"1311 Project"and Scientific Foundation (NY217169, NY215062, NY215107,NY217087)the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of Chinathe Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions (TJ217038)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (SJCX21-0297)the Synergetic Innovation Center for Organic Electronics and Information Displaysthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the distributed feedback gratings for fine tuning the lasing wavelength. Notably, elastic lasers based on three typical light-emitting molecules show com-parable lasing threshold values analogous to rigid devices and a continuous wavelength tunability of about 10 nm by mechanic-al stretching. In addition, the stretchability provides a simple solution for dynamically tuning the lasing wavelength in a spec-tral range that is challenging to achieve for inorganic counterparts. Our work has provided a simple and efficient method of fab-ricating tunable organic lasers that depend on stretchable distributed feedback gratings, demonstrating a significant step in the advancement of flexible organic optoelectronic devices.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant Nos.61790581,61790582,and 61790584)the National Natural Science Foundation of China(Grant No.61435012)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)
文摘The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epitaxial structure,grown on Te-doped(001) oriented GaSb substrate by molecular beam epitaxy, consists of a distributed Bragg reflector(DBR), a multi-quantum-well gain region, and a window layer. An intra-cavity SiC heat spreader was attached to the gain chip for effective thermal management. A continuous-wave output power of over 1 W operating at 2.03 μm wavelength operating near room temperature was achieved using a 3% output coupler.
文摘A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.
文摘Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274046,61335009,61201103,and 61320106013)the National High Technology Research and Development Program of China(Grant No.2013AA014202)
文摘Internal loss is a key internal parameter for high power 1060-nm InGaAs/A1GaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum welt (QW) AIGaAs separate confinement het- erostructure semiconductor laser, and the method to reduce internal loss. By light doping the n-cladding layer, and stepwise doping the p-cladding layer combined with the expanded waveguide layer, a broad area laser with internal loss of 1/cm is designed and fabricated. Ridge waveguide laser with an output power of 350 mW is obtained. The threshold current and slope efficiency near the threshold current are 20 mA and 0.8 W/A, respectively.
基金Jiangsu Province Key R&D Program(Industry Prospect and Common Key Technologies)(No.BE2014083)Jiangxi Natural Science Foundation Project(No.2019ACBL20054)。
文摘Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10174057 and 90201011), and the Foundation for Key Program of Ministry of Education, China (Grant No 2005-105148).
文摘Polarization switching (PS) dynamics and synchronization performances of two mutually coupled vertical-cavity surface-emitting lasers (VCSELs) are studied theoretically in this paper. A group of dimensionless rate equations is derived to describe our model. While analysing the PS characteristics, we focus on the effects of coupling rate and frequency detuning regarding different mutual injection types. The results indicate that the x-mode injection defers the occurrence of PS, while the y-mode injection leads the PS to occur at a lower current. Strong enough polarization-selective injection can suppress the PS. Moreover, if frequency detuning is considered, the effects of polarization-selective mutual injection will be weakened. To evaluate the synchronization performance, the correlation coefficients and output dynamics of VCSELs with both pure mode and mixed mode polarizations are given. It is found that performance of complete synchronization is sensitive to the frequency mismatch but it is little affected by mixed mode polarizations, which is opposite to the case of injection-locking synchronization.
文摘We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and spectrum of output light,and optimizing the length of gratings,in order to reduce the mode competition effect in the device,and obtain the high power output light wave with good longitudinal mode characteristics.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant No.62174154).
文摘The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.
文摘Long wavelength GaSb-based quantum well lasers have been optimized for high coupling efficiency into an optical system. Two approaches were used to reduce the vertical far-field. In the first approach we showed the use of V-shaped Weaker Waveguide in the n-cladding layer dramatically reduces vertical beam divergence without any performance degradation compared to a conventional broad-waveguide laser structure. Starting from a broad waveguide laser structure design which gives low threshold current and a large vertical far-field (VFF), the structure was modified to decrease the VFF while maintaining a low threshold-current density. In a first step the combination of a narrow optical waveguide and reduced refractive index step between the waveguide and the cladding layers reduce the VFF from 67? to 42?. The threshold current density was kept low to a value of ~190 A/cm2 for 1000 × 100 μm2 devices by careful adjustment of the doping profile in the p-type cladding layer. The insertion of a V-Shaped Weaker Waveguide in the n-cladding layer is shown to allow for further reduction of the VFF to a value as low as 35? for better light-coupling efficiency into an optical system without any degradation of the device performance. In the second approach, we showed that the use of a depressed cladding structure design also allows for the reduction of the VFF while maintaining low the threshold current density (210 A/cm2), slightly higher value compare to the first design.
文摘The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.
文摘We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .
基金supported by the National Natural Science Foundation of China (Grant Nos. 60577019 and 60777041)the International Cooperation Project of Shanxi Province,China (Grant No. 2007081019)
文摘This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.
基金supported by the National Basic Research Program of China(Grant No.2013CB922404)the National Natural Science Foundation of China(Grant No.61177047)the Key Project of the National Natural Science Foundation of China(Grant No.61235010)
文摘We demonstrate the first use of single layer graphene for compressing self-Q-switching pulses in semiconductor disk lasers. The gain region of the semiconductor disk laser used InGaAs quantum wells with a central wavelength of 1030 nm. Due to self saturable absorption of the quantum wells, the disk laser emitted at the self-Q-switching state with a pulse width of 13 μs. By introducing the single layer graphene as a saturable absorber into the V-shaped laser cavity, the pulse width of the self-pulse was compressed to 2 μs with a lower pump power of 300 mW. As the pump power was increased, multiple pulses with the pulse width of 1.8 μs appeared. The compression factor was about 7.2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61527823 and 61377105)
文摘Square microcavities, which support whispering-gallery modes with total internal reflections, can be employed as high-quality laser resonators for fabricating compact, low-threshold semiconductor lasers. In this paper, we review the recent progress of square microcavity semiconductor lasers. The characteristics of confined optical modes in the square microcavities are introduced briefly. Based on the mode properties of the square microcavities, dual-mode lasers with tunable wavelength intervals are realized for generating microwave signals. Furthermore, deformed square microcavity lasers with the sidewalls replaced by circular sides are proposed and experimentally demonstrated to enhance the mode confinement and increase the dual-mode interval to the THz range. In order to further reduce the device size, metal-confined wavelength-scale square cavity lasers are also demonstrated.
基金the National Natural Science Foundation of China(Grant No.62075168)Guang Dong Basic and Applied Basic Research Foundation(Grant No.2020A1515011088)Special Project in Key Fields of Guangdong Provincial Department of Education of China(Grant No.2020ZDZX3052 and 2019KZDZX1025)。
文摘We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers constructed by a threeelement laser array with self-feedback.The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection,which are utilized as nonlinear nodes to realize the reservoirs.We show that each delayed radar probe signal can be predicted well and to synchronize with its corresponding trained reservoir,even when parameter mismatches exist between the response laser array and the driving laser array.Based on this,the three synchronous probe signals are utilized for ranging to three targets,respectively,using Hilbert transform.It is demonstrated that the relative errors for ranging can be very small and less than 0.6%.Our findings show that optical reservoir computing provides an effective way for applications of target ranging.
文摘<正>High power broad area semiconductor lasers have found increasing applications in pumping of solid state laser systems and fiber amplifiers, frequency doubling, medical systems and material processing. Packaging including the assembly design, process and thermal management, has a significant impact on the optical performance and reliability of a high power broad area laser. In this paper, we introduce the package structures and assembling process of 980nm broad area lasers and report the performances including output power, thermal behavior and far fields.We will report two types of high power broad area laser assemblies. One is a microchannel liquid cooled assembly and the other is a conduction cooled CT-mount assembly .Optical powers of 15W and 10W were achieved from a 980nm broad area laser with a 120μm stripe width in a microchannel liquid cooled assembly and conduction cooled CT-mount assembly, respectively .Furthermore, a high power of 6.5 W out of fiber was demonstrated from a pigtailed, fully packaged butterfly-type module without TEC ( Thermoelectric cooler ).The measurement results showed that thermal management is the key in not only improving output power, but also significantly improving beam divergence and far field distribution. The results also showed that the die attach solder can significant impact the reliability of high power broad area lasers and that indium solder is not suitable for high power laser applications due to electromigration at high current densities and high temperatures.
文摘Using the ray trace method, three-section semiconductor lasers are studied. An analytic expression of output power for the three-section semiconductor lasers is derived for the first time. From this expression, threshold condition is also obtained.
文摘Multielectrode semiconductor lasers are studied via the ray method.The expression of the output photon number of N -electrode semiconductor lasers has been derived for the first time.When N =1 or 2,the expression of the output photon number fits in that of one-electrode (general) or two-electrode semiconductor lasers perfectly.