Objective To explore the strategies which reduce the amount of xenoantigen Galα1, 3 Gal. Methods Human α-galactosidase gene and α1,2-fucosyltransferase gene were transferred into cul-tured porcine vascular endothel...Objective To explore the strategies which reduce the amount of xenoantigen Galα1, 3 Gal. Methods Human α-galactosidase gene and α1,2-fucosyltransferase gene were transferred into cul-tured porcine vascular endothelial cells PEDSV.15 and human α-galactosidase transgenic mice were produced. The Galα1,3Gal on the cell surface and susceptibility of cells to human antibody-mediated lysis were analyzed. Results Human α-galactosidase gene alone reduced 78% of Galα1,3Gal on PEDSV.15 cell surface while human α-galactosidase combined with α1,2-fucosyltransferase genes removed Galα1,3Gal completely. Decrease of Galα1,3Gal could reduce susceptibility of cells to human antibody-mediated lysis, especially during co-expression of α-galactosidase gene and α1,2-fucosyltransferase gene. RT-PCR indicated positive human α-galactosidase gene expression in all organs of positive human α-galacto-sidase transgenic F1 mice including heart, liver, kidney, lung, and spleen, the amount of Galα1,3Gal antigens on which was reduced largely. 58% of spleen cells from F1 mice were destroyed by comp-lement-mediated lysis compared with 24% of those from normal mice. Conclusions Human α-galactosidase gene and α1,2-fucosyltransferase gene effectively reduce the expression of Galα1,3Gal antigens on endothelial cell surface and confers resistance to human serum-mediated cytolysis. The expression of human α-galactosidase in mice can also eliminate the Galα1,3Gal antigens in most tissues and decrease the susceptibility of spleen cells to human serum-mediated cytolysis.展开更多
AIM: To evaluate the safety and clinical efficacy of a new immunotherapy using both α-Gal epitope-pulsed dendritic cells (DCs) and cytokine-induced killer cells. METHODS: Freshly collected hepatocellular carcino...AIM: To evaluate the safety and clinical efficacy of a new immunotherapy using both α-Gal epitope-pulsed dendritic cells (DCs) and cytokine-induced killer cells. METHODS: Freshly collected hepatocellular carcinoma (HCC) tumor tissues were incubated with a mixture of neuraminidase and recombinant αl,3-galactosyltrans- ferase (αI,3GT) to synthesize α-Gal epitopes on car- bohydrate chains of the glycoproteins of tumor mem- branes. The subsequent incubation of the processed membranes in the presence of human natural anti-Gal IgG resulted in the effective phagocytosis to the tumor membrane by DCs. Eighteen patients aged 38-78 years with stage 111 primary HCC were randomly chosen for the study; 9 patients served as controls, and 9 patients were enrolled in the study group.RESULTS: The evaluation demonstrated that the pro- cedure was safe; no serious side effects or autoimmune diseases were observed. The therapy significantly pro- longed the survival of treated patients as compared with the controls (17.1 ± 2.01 mo vs 10.1 ±4.5 mo, P = 0.00121). After treatment, all patients in the study group had positive delayed hypersensitivity and robust systemic cytotoxicity in response to tumor lysate as measured by interferon-y-expression in peripheral blood mononuclear cells using enzyme-linked immunosorbent spot assay. They also displayed increased numbers of CD8-, CD45RO- and CD56-positive cells in the peripheral blood and decreased α-fetoprotein level in the se- rum. CONCLUSION: This new tumor-specific immunotherapy is safe, effective and has a great potential for the treat- ment of tumors.展开更多
文摘Objective To explore the strategies which reduce the amount of xenoantigen Galα1, 3 Gal. Methods Human α-galactosidase gene and α1,2-fucosyltransferase gene were transferred into cul-tured porcine vascular endothelial cells PEDSV.15 and human α-galactosidase transgenic mice were produced. The Galα1,3Gal on the cell surface and susceptibility of cells to human antibody-mediated lysis were analyzed. Results Human α-galactosidase gene alone reduced 78% of Galα1,3Gal on PEDSV.15 cell surface while human α-galactosidase combined with α1,2-fucosyltransferase genes removed Galα1,3Gal completely. Decrease of Galα1,3Gal could reduce susceptibility of cells to human antibody-mediated lysis, especially during co-expression of α-galactosidase gene and α1,2-fucosyltransferase gene. RT-PCR indicated positive human α-galactosidase gene expression in all organs of positive human α-galacto-sidase transgenic F1 mice including heart, liver, kidney, lung, and spleen, the amount of Galα1,3Gal antigens on which was reduced largely. 58% of spleen cells from F1 mice were destroyed by comp-lement-mediated lysis compared with 24% of those from normal mice. Conclusions Human α-galactosidase gene and α1,2-fucosyltransferase gene effectively reduce the expression of Galα1,3Gal antigens on endothelial cell surface and confers resistance to human serum-mediated cytolysis. The expression of human α-galactosidase in mice can also eliminate the Galα1,3Gal antigens in most tissues and decrease the susceptibility of spleen cells to human serum-mediated cytolysis.
基金Supported by Hong Kong Wang Kuan Cheng GrantInner Mongolia Stem Cell Grant, No. kjk10jhg
文摘AIM: To evaluate the safety and clinical efficacy of a new immunotherapy using both α-Gal epitope-pulsed dendritic cells (DCs) and cytokine-induced killer cells. METHODS: Freshly collected hepatocellular carcinoma (HCC) tumor tissues were incubated with a mixture of neuraminidase and recombinant αl,3-galactosyltrans- ferase (αI,3GT) to synthesize α-Gal epitopes on car- bohydrate chains of the glycoproteins of tumor mem- branes. The subsequent incubation of the processed membranes in the presence of human natural anti-Gal IgG resulted in the effective phagocytosis to the tumor membrane by DCs. Eighteen patients aged 38-78 years with stage 111 primary HCC were randomly chosen for the study; 9 patients served as controls, and 9 patients were enrolled in the study group.RESULTS: The evaluation demonstrated that the pro- cedure was safe; no serious side effects or autoimmune diseases were observed. The therapy significantly pro- longed the survival of treated patients as compared with the controls (17.1 ± 2.01 mo vs 10.1 ±4.5 mo, P = 0.00121). After treatment, all patients in the study group had positive delayed hypersensitivity and robust systemic cytotoxicity in response to tumor lysate as measured by interferon-y-expression in peripheral blood mononuclear cells using enzyme-linked immunosorbent spot assay. They also displayed increased numbers of CD8-, CD45RO- and CD56-positive cells in the peripheral blood and decreased α-fetoprotein level in the se- rum. CONCLUSION: This new tumor-specific immunotherapy is safe, effective and has a great potential for the treat- ment of tumors.