期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Application of Galerkin spectral method for tearing mode instability
1
作者 Wu Sun Jiaqi Wang +3 位作者 Lai Wei Zhengxiong Wang Dongjian Liu Qiaolin He 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期179-187,共9页
Magnetic reconnection and tearing mode instability play a critical role in many physical processes.The application of Galerkin spectral method for tearing mode instability in two-dimensional geometry is investigated i... Magnetic reconnection and tearing mode instability play a critical role in many physical processes.The application of Galerkin spectral method for tearing mode instability in two-dimensional geometry is investigated in this paper.A resistive magnetohydrodynamic code is developed,by the Galerkin spectral method both in the periodic and aperiodic directions.Spectral schemes are provided for global modes and local modes.Mode structures,resistivity scaling,convergence and stability of tearing modes are discussed.The effectiveness of the code is demonstrated,and the computational results are compared with the results using Galerkin spectral method only in the periodic direction.The numerical results show that the code using Galerkin spectral method individually allows larger time step in global and local modes simulations,and has better convergence in global modes simulations. 展开更多
关键词 galerkin spectral method tearing mode instability magnetic reconnection MAGNETOHYDRODYNAMICS
下载PDF
An accurate and efficient space-time Galerkin spectral method for the subdiffusion equation
2
作者 Wei Zeng Chuanju Xu 《Science China Mathematics》 SCIE CSCD 2024年第10期2387-2408,共22页
In this paper, we design and analyze a space-time spectral method for the subdiffusion equation.Here, we are facing two difficulties. The first is that the solutions of this equation are usually singular near the init... In this paper, we design and analyze a space-time spectral method for the subdiffusion equation.Here, we are facing two difficulties. The first is that the solutions of this equation are usually singular near the initial time. Consequently, traditional high-order numerical methods in time are inefficient. The second obstacle is that the resulting system of the space-time spectral approach is usually large and time-consuming to solve. We aim at overcoming the first difficulty by proposing a novel approach in time, which is based on variable transformation techniques. Suitable ψ-fractional Sobolev spaces and a new variational framework are introduced to establish the well-posedness of the associated variational problem. This allows us to construct our space-time spectral method using a combination of temporal generalized Jacobi polynomials(GJPs) and spatial Legendre polynomials. For the second difficulty, we propose a fast algorithm to effectively solve the resulting linear system. The fast algorithm makes use of a matrix diagonalization in space and QZ decomposition in time. Our analysis and numerical experiments show that the proposed method is exponentially convergent with respect to the polynomial degrees in both space and time directions, even though the exact solution has very limited regularity. 展开更多
关键词 subdiffusion equations variable transformation Ψ-Sobolev spaces WELL-POSEDNESS space-time galerkin spectral method error estimate fast algorithm
原文传递
A Posteriori Error Estimates of the Galerkin Spectral Methods for Space-Time Fractional Diffusion Equations 被引量:3
3
作者 Huasheng Wang Yanping Chen +1 位作者 Yunqing Huang Wenting Mao 《Advances in Applied Mathematics and Mechanics》 SCIE 2020年第1期87-100,共14页
In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then... In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then based on the discretization scheme,reliable a posteriori error estimates for the spectral approximation are derived.Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator. 展开更多
关键词 galerkin spectral methods space-time fractional diffusion equations a posteriori error estimates.
原文传递
A Sub-element Adaptive Shock Capturing Approach for Discontinuous Galerkin Methods 被引量:1
4
作者 Johannes Markert Gregor Gassner Stefanie Walch 《Communications on Applied Mathematics and Computation》 2023年第2期679-721,共43页
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o... In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy. 展开更多
关键词 High-order methods Discontinuous galerkin spectral element method Finite volume method Shock capturing ASTROPHYSICS Stellar physics
下载PDF
A-Posteriori Error Estimation for the Legendre Spectral Galerkin Method in One-Dimension
5
作者 Lijun Yi Benqi Guo 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期40-52,共13页
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh... In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis. 展开更多
关键词 Legendre spectral galerkin method two-point boundary value problem SUPERCONVERGENCE a-posteriori error estimation.
下载PDF
椭圆域上二阶/四阶变系数问题有效的谱Galerkin逼近
6
作者 田晓红 安静 《数学杂志》 2024年第3期269-282,共14页
本文提出了椭圆域上二阶/四阶变系数问题的一种有效的谱Galerkin逼近.首先,我们将原问题化为极坐标下的等价形式,并建立其弱形式及相应的离散格式.其次,针对二阶情形,我们证明了弱解和逼近解的存在唯一性及它们之间的误差估计.另外,根... 本文提出了椭圆域上二阶/四阶变系数问题的一种有效的谱Galerkin逼近.首先,我们将原问题化为极坐标下的等价形式,并建立其弱形式及相应的离散格式.其次,针对二阶情形,我们证明了弱解和逼近解的存在唯一性及它们之间的误差估计.另外,根据极条件和勒让得多项式的正交性,我们构造了一组有效的径向基函数,并在θ方向作截断的傅立叶展开,推导了离散格式等价的矩阵形式.最后,我们给出了大量的数值算例,数值结果表明了我们算法的收敛性和谱精度. 展开更多
关键词 二阶/四阶问题 galerkin方法 误差分析 椭圆区域
下载PDF
Structural Reliability Assessment by a Modified Spectral Stochastic Meshless Local Petrov-Galerkin Method
7
作者 Guang Yih Sheu 《World Journal of Mechanics》 2013年第2期101-111,共11页
This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modifie... This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral stochastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of random mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addition, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately. 展开更多
关键词 spectral STOCHASTIC MESHLESS Local Petrov-galerkin method Generalized Polynomial Chaos Expansion First-Order RELIABILITY method STRUCTURAL Failure Probability RELIABILITY Index
下载PDF
GENERALIZED JACOBI SPECTRAL GALERKIN METHOD FOR FRACTIONAL-ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS
8
作者 Yanping Chen Zhenrong Chen Yunqing Huang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第2期355-371,共17页
For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected gen... For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected generalized Jacobi functions(GJFs),which can be utilized as natural basis functions of spectral methods for weakly singular FVIDEs when appropriately constructed.The developed method's spectral rate of convergence is determined using the L^(∞)-norm and the weighted L^(2)-norm.Numerical results indicate the usefulness of the proposed method. 展开更多
关键词 Generalized Jacobi spectral galerkin method Fractional-order Volterra integ-ro-differential equations Weakly singular kernels Convergence analysis
原文传递
SPECTRAL METHOD IN TIME FOR KdV EQUATIONS 被引量:1
9
作者 吴声昌 刘小清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第4期373-378,共6页
This paper presents a fully spectral discretization method for solving KdV equations with periodic boundary conditions.Chebyshev pseudospectral approximation in the time direction and Fourier Galerkin approximation in... This paper presents a fully spectral discretization method for solving KdV equations with periodic boundary conditions.Chebyshev pseudospectral approximation in the time direction and Fourier Galerkin approximation in the spatial direction.The expansion coefficients are determined by minimizing an object funictional.Rapid convergence of the method is proved. 展开更多
关键词 KdV equation spectral method galerkin approximation pseudospectral approximation
下载PDF
四阶Steklov资源问题有效的谱Galerkin逼近及误差估计
10
作者 郑继会 田晓红 安静 《南昌大学学报(理科版)》 CAS 北大核心 2023年第6期511-518,共8页
提出了四阶Steklov资源问题的一种有效的谱Galerkin逼近及误差估计。首先引入了适当的Sobolev空间,推导了原问题的弱形式及相应的离散格式。其次,基于Lax-Milgram引理,证明了弱解和逼近解的存在唯一性,再根据正交投影算子的逼近性质,进... 提出了四阶Steklov资源问题的一种有效的谱Galerkin逼近及误差估计。首先引入了适当的Sobolev空间,推导了原问题的弱形式及相应的离散格式。其次,基于Lax-Milgram引理,证明了弱解和逼近解的存在唯一性,再根据正交投影算子的逼近性质,进一步证明了逼近解的误差估计。另外构造了逼近空间中的一组基函数,推导了离散格式基于张量积的矩阵形式。最后给出了一些数值算例,数值结果表明了该算法的有效性和理论结果的正确性。 展开更多
关键词 四阶Steklov资源问题 galerkin方法 误差估计 张量积
下载PDF
SPECTRAL/HP ELEMENT METHOD WITH HIERARCHICAL RECONSTRUCTION FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS
11
作者 Zhiliang Xu Guang Lin 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1737-1748,共12页
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectra... The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservation laws. An orthogonal spectral basis written in terms of Jacobi polynomials is applied. High computational efficiency is obtained due to such matrix-free algorithm. The formulation is conservative, and essential nomoscillation is enforced by the HR limiter. We show that HR preserves the order of accuracy of the spectral/hp element method for smooth solution problems and generate essentially non-oscillatory solutions profiles for capturing discontinuous solutions without local characteristic decomposition. In addition, we introduce a postprocessing technique to improve HR for limiting high degree numerical solutions. 展开更多
关键词 spectral/hp element method hierarchical reconstruction discontinuous galerkin hyperbolic conservation laws
下载PDF
解一类具有周期系数的Helm holtz方程的Galerkin谱方法 被引量:1
12
作者 冯立新 马富明 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2003年第3期253-258,共6页
考虑一类具有周期系数的Helmholtz方程,它是一类衍射光栅问题的数学模型,用Galerkin谱方法求解此问题,得到了最优的误差估计和数值计算结果.
关键词 HELMHOLTZ方程 周期系数 galerkin谱方法 误差估计 光学理论 衍射光栅 数学模型
下载PDF
采用谱单元Galerkin法求解非线性模态 被引量:2
13
作者 李诚 李鸿光 《噪声与振动控制》 CSCD 北大核心 2022年第4期25-31,37,共8页
为进一步提高非线性振动系统在不变流形定义下的非线性模态的求解精度,采用一种基于谱单元的Galerkin求解方案。不同于已有的非线性模态Galerkin分片求解方法,该方案选取第二类Chebyshev多项式的零点构造单元的Lagrange插值函数,将其与... 为进一步提高非线性振动系统在不变流形定义下的非线性模态的求解精度,采用一种基于谱单元的Galerkin求解方案。不同于已有的非线性模态Galerkin分片求解方法,该方案选取第二类Chebyshev多项式的零点构造单元的Lagrange插值函数,将其与谐波函数一起作为基函数对整个求解域进行Galerkin离散。在展开系数的迭代求解中,Jacobian矩阵的稀疏性因选取的谱单元阶数不同而不同。采用该方法与分片求解法分别计算一个非线性振动系统的非线性模态并进行比较。结果表明该方法在求解域较大时仍可获得较为准确的解。 展开更多
关键词 振动与波 非线性模态 不变流形 galerkin 谱单元
下载PDF
Least-Squares及Galerkin谱元方法求解环形区域内的泊松方程 被引量:1
14
作者 王亚洲 秦国良 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第5期121-127,共7页
为研究基于Least-Squares变分及Galerkin变分两种形式的谱元方法的求解特性,推导了极坐标系中采用两种变分方法求解环形区域内Poisson方程时对应的弱解形式,采用Chebyshev多项式构造插值基函数进行空间离散,得到两种谱元方法对应的代数... 为研究基于Least-Squares变分及Galerkin变分两种形式的谱元方法的求解特性,推导了极坐标系中采用两种变分方法求解环形区域内Poisson方程时对应的弱解形式,采用Chebyshev多项式构造插值基函数进行空间离散,得到两种谱元方法对应的代数方程组,由此分析了系数矩阵结构的特点。数值计算结果显示:Least-Squares谱元方法为实现方程的降阶而引入新的求解变量,使得代数方程组形式更为复杂,但边界条件的处理比Galerkin谱元方法更为简单;两种谱元方法均能求解极坐标系中的Poisson方程且能获得高精度的数值解,二者绝对误差分布基本一致;固定单元内的插值阶数时,增加单元数可减小数值误差,且表现出代数精度的特点,误差降低速度较慢,而固定单元数时,在一定范围内数值误差随插值阶数的增加而减小的速度更快,表现出谱精度的特点;单元内插值阶数较高时,代数方程组系数矩阵的条件数急剧增多,方程组呈现病态,数值误差增大,这一特点限制了单元内插值阶数的取值。研究内容对深入了解两种谱元方法在极坐标系中求解Poisson方程时的特点、进一步采用相关分裂算法求解实际流动问题具有参考价值。 展开更多
关键词 Least-Squares变分 galerkin变分 谱元方法 POISSON方程 极坐标系
下载PDF
广义Rosenau-Kawahara方程的有效谱方法
15
作者 文贤 王中庆 《上海理工大学学报》 CAS CSCD 北大核心 2024年第1期30-35,86,共7页
针对广义Rosenau-Kawahara方程提出了Legendre dual-Petrov-Galerkin谱方法,并基于对角化技巧,构建了快速有效算法。在此基础上研究了单个孤立波的传播、守恒律及波的生成等物理现象。数值结果验证了所提算法的有效性。
关键词 Legendre dual-Petrov-galerkin谱方法 广义Rosenau-Kawahara方程 孤立波 守恒律
下载PDF
一类非线性反应-扩散方程的间断Galerkin谱元方法
16
作者 吴华 韩晓飞 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期757-768,共12页
提出了一类非线性反应-扩散方程的间断Galerkin谱元方法,在每个子区间上,基本格式采用Legendre-Galerkin方法,非线性项采用Chebyshev-Gauss-Lobatto插值,跳跃项利用中心数值流量处理,时间方向应用4阶低存储Runge-Kutta格式离散.该方法... 提出了一类非线性反应-扩散方程的间断Galerkin谱元方法,在每个子区间上,基本格式采用Legendre-Galerkin方法,非线性项采用Chebyshev-Gauss-Lobatto插值,跳跃项利用中心数值流量处理,时间方向应用4阶低存储Runge-Kutta格式离散.该方法处理某些初值间断问题有效,并可并行实现;给出了该方法半离散格式下的稳定性和收敛性分析,利用Chebyshev-Gauss-Lobatto插值算子在不带权意义下的逼近结果,获得了按L2-模的最优误差估计;最后,给出了连续问题和间断问题的数值算例. 展开更多
关键词 间断galerkin方法 谱元法 反应-扩散方程 Chebyshev-Gauss-Lobatto插值
下载PDF
四阶混合边值问题的广义Jacobi-Petrov-Galerkin谱方法
17
作者 孙涛 侯燕 《郑州大学学报(理学版)》 CAS 北大核心 2013年第4期26-29,共4页
发展了矩形区域上的四阶混合边值问题的广义Jacobi-Petrov-Galerkin谱方法,利用广义Jacobi多项式对模型问题的精确解进行数值展开,设计了有效的数值算法.数值结果验证了该算法的有效性和高精度.
关键词 四阶混合边值问题 广义Jacobi—Petrov—galerkin谱方法 广义Jacobi—Gauss—Lobatto插值
下载PDF
谱-Galerkin方法求解分数阶偏积分微分方程(英文)
18
作者 李物兰 白宝钢 +2 位作者 李胜军 胡晓晓 韩艳敏 《湖南师范大学自然科学学报》 CAS 北大核心 2013年第6期1-6,共6页
研究了带弱奇异核分数阶偏积分微分方程的初边值问题.首先,在空间方向用谱Galerkin方法得到空间半离散格式,然后证明了该格式的稳定性和误差估计,收敛率体现了"谱精度";在时间方向采用了中心差分,积分项采用了Lagrange内插法... 研究了带弱奇异核分数阶偏积分微分方程的初边值问题.首先,在空间方向用谱Galerkin方法得到空间半离散格式,然后证明了该格式的稳定性和误差估计,收敛率体现了"谱精度";在时间方向采用了中心差分,积分项采用了Lagrange内插法进行离散得到时空全离散格式.最后用数值实验检验了该方法的有效性,同时也确保了理论分析的准确性. 展开更多
关键词 galerkin方法 分数阶偏积分微分方程 弱奇异核 稳定性 误差估计
下载PDF
谱Galerkin方法的超几何收敛
19
作者 陶霞 《高师理科学刊》 2016年第6期6-8,共3页
介绍了求解第一类Volterra积分方程的谱Legendre-Galerkin方法和谱Chebyshev-Galerkin方法.数值算例表明,谱Galerkin方法不仅收敛速度快,而且能达到超几何收敛.
关键词 第一类Volterra积分方程 谱Legendre-galerkin方法 谱Chebyshev-galerkin方法 超几何收敛
下载PDF
Navier-Stokes方程的高精度非线性Galerkin方法
20
作者 何银年 《西安交通大学学报》 EI CAS CSCD 北大核心 2000年第4期86-89,共4页
提出了求解Navier Stokes方程的一类高精度非线性Galerkin方法 。
关键词 NAVIER-STOKES方程 非线性galerkin方法 数值解
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部