Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emiss...Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emission scanning electron microscopy and atomic force microscopy, transmission electron microscopy (TEM) has thus far not been used, perhaps because of difficulties in ultrathin sectioning this resin in cured (polymerized) state. In the technical note presented here, a novel sample preparation method is described which enabled us to examine the microstructural morphology of UF resin by transmission electron microscopy in ultrathin sections, revealing the presence of spherical particles within the resin. Our initial attempt to ultrathin section the resin directly was not successful as it was too brittle to trim blocks for sectioning. Then, we developed a sample preparation technique that involved impregnation ofPinus radiatawood tissues with the UF resin, and then embedding of resin impregnated wood tissues with Spurr’s low viscosity embedding medium, which has been widely employed in plant and wood ultrastructure work. The TEM images illustrated and the information on the microstructural morphology of the UF resin presented are based on this novel sample preparation approach.展开更多
The propagation, reflection, and transmission of SH waves in slightly com- pressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressi...The propagation, reflection, and transmission of SH waves in slightly com- pressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer over- lying a slightly compressible, finitely deformed half-space is derived. The present paper Mso deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suit- able boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.展开更多
The partial charge simulation method is presented to solve the characteristicimpedance of the transmission line of specific cross section with an offset inner conductor.Thismethod has a higher accuracy due to the accu...The partial charge simulation method is presented to solve the characteristicimpedance of the transmission line of specific cross section with an offset inner conductor.Thismethod has a higher accuracy due to the accurate satisfaction of the boundary condition on theouter conductor.The combined method of the Gauss elimination and optimization is used tosolve the equation of charge simulation,and it is an effective method for increasing the accuracyand assuring the convergence.The Green’s functions of five transmission lines(i.e,with circular,elliptic,rectangular,trough and slab conductor)are given.展开更多
文摘Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emission scanning electron microscopy and atomic force microscopy, transmission electron microscopy (TEM) has thus far not been used, perhaps because of difficulties in ultrathin sectioning this resin in cured (polymerized) state. In the technical note presented here, a novel sample preparation method is described which enabled us to examine the microstructural morphology of UF resin by transmission electron microscopy in ultrathin sections, revealing the presence of spherical particles within the resin. Our initial attempt to ultrathin section the resin directly was not successful as it was too brittle to trim blocks for sectioning. Then, we developed a sample preparation technique that involved impregnation ofPinus radiatawood tissues with the UF resin, and then embedding of resin impregnated wood tissues with Spurr’s low viscosity embedding medium, which has been widely employed in plant and wood ultrastructure work. The TEM images illustrated and the information on the microstructural morphology of the UF resin presented are based on this novel sample preparation approach.
文摘The propagation, reflection, and transmission of SH waves in slightly com- pressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer over- lying a slightly compressible, finitely deformed half-space is derived. The present paper Mso deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suit- able boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.
文摘The partial charge simulation method is presented to solve the characteristicimpedance of the transmission line of specific cross section with an offset inner conductor.Thismethod has a higher accuracy due to the accurate satisfaction of the boundary condition on theouter conductor.The combined method of the Gauss elimination and optimization is used tosolve the equation of charge simulation,and it is an effective method for increasing the accuracyand assuring the convergence.The Green’s functions of five transmission lines(i.e,with circular,elliptic,rectangular,trough and slab conductor)are given.