针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化...针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化的阶比信号,通过阶比信号复包络直接求两种频率分量的幅值、相位,经实验分析这种方法能保留齿轮箱的瞬变信息。而后计算两种频率分量的谱峭度,以最大谱峭度对应的频率带能量与原阶比信号总能量之比作为故障特征,最后采用高斯混合模型对风电机组齿轮箱在不同工况下的150组振动信号进行特征描述,运用最大贝叶斯分类器实现故障识别。故障识别率表明该方法可有效地识别任意时变工况下的齿轮早期局部微弱故障。展开更多
文摘针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化的阶比信号,通过阶比信号复包络直接求两种频率分量的幅值、相位,经实验分析这种方法能保留齿轮箱的瞬变信息。而后计算两种频率分量的谱峭度,以最大谱峭度对应的频率带能量与原阶比信号总能量之比作为故障特征,最后采用高斯混合模型对风电机组齿轮箱在不同工况下的150组振动信号进行特征描述,运用最大贝叶斯分类器实现故障识别。故障识别率表明该方法可有效地识别任意时变工况下的齿轮早期局部微弱故障。