Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassi...Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis. This places individuals at risk of developing cirrhosis, hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs. Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state. Pathological accumulation of cholesteryl ester (CE) in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease. Overconsumption of dietary fat, cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals. Dietary regimes have proven futile and barfing surgery, no realistic alternatives are at hand as effective drugs are few and not without side effects. Overweight and obesity-related diseases are no longer restricted to the developed world and as such, constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step, elucidation of the molecular pathophysiology underlying each associated disease state. The lipid droplet (LD), an up to now over- looked intracellular organelle, appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs. As the molecular machinery and mechanisms of LDs of each cell type are being elucidated, regulatory proteins used to control various cellular processes are emerging. Of these and the subject of this review, small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.展开更多
Gap junctional intercellular communicationexchange of small molecules and ions between contiguous cells through membranous gap junctional channelsis essential for growth control and tissue homecotasis. This work conce...Gap junctional intercellular communicationexchange of small molecules and ions between contiguous cells through membranous gap junctional channelsis essential for growth control and tissue homecotasis. This work concerns the functional expression of gap junction protein connexin 43 (Cx43) in normal human lung cells and the changes in lung carcinoma cells. By. using Northern blot hybridization analysis and Cx43 immunocytochemical methods, it was otherved that cultured normal human embryonic lung cells expressed a high level of Cx43 in both mRNA and protein levels.The Cx43 immunofluorescence was localized at cell membrane regions corresponding to the location of gap junctions. These normal lung cells were competent of intercellular communication function as detected by Lucifer yellow dye transfer. In contrast to normal celis, Cx43 mRNA and protein was not detectable in the carcinoma PG cell line. These tumor cells were defective of intercellular communication function. These results demonstrate that Cx43 is expressed in normal cultured human embryonic lung cells but not in lung tumor cells. The lack of intercellular communication in the lung tumor cell line correlates with dysfunctional intercellular communication. The suggestive role of Cx as a tumor suppersor gene is discussed.展开更多
文摘Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis. This places individuals at risk of developing cirrhosis, hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs. Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state. Pathological accumulation of cholesteryl ester (CE) in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease. Overconsumption of dietary fat, cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals. Dietary regimes have proven futile and barfing surgery, no realistic alternatives are at hand as effective drugs are few and not without side effects. Overweight and obesity-related diseases are no longer restricted to the developed world and as such, constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step, elucidation of the molecular pathophysiology underlying each associated disease state. The lipid droplet (LD), an up to now over- looked intracellular organelle, appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs. As the molecular machinery and mechanisms of LDs of each cell type are being elucidated, regulatory proteins used to control various cellular processes are emerging. Of these and the subject of this review, small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.
文摘Gap junctional intercellular communicationexchange of small molecules and ions between contiguous cells through membranous gap junctional channelsis essential for growth control and tissue homecotasis. This work concerns the functional expression of gap junction protein connexin 43 (Cx43) in normal human lung cells and the changes in lung carcinoma cells. By. using Northern blot hybridization analysis and Cx43 immunocytochemical methods, it was otherved that cultured normal human embryonic lung cells expressed a high level of Cx43 in both mRNA and protein levels.The Cx43 immunofluorescence was localized at cell membrane regions corresponding to the location of gap junctions. These normal lung cells were competent of intercellular communication function as detected by Lucifer yellow dye transfer. In contrast to normal celis, Cx43 mRNA and protein was not detectable in the carcinoma PG cell line. These tumor cells were defective of intercellular communication function. These results demonstrate that Cx43 is expressed in normal cultured human embryonic lung cells but not in lung tumor cells. The lack of intercellular communication in the lung tumor cell line correlates with dysfunctional intercellular communication. The suggestive role of Cx as a tumor suppersor gene is discussed.
文摘目的观察氯胺酮对7d龄SD幼鼠海马神经元细胞GAP-43表达的影响。方法对7d龄SD幼鼠注射氯胺酮25mg/kg(k1组)、50mg/kg(k2组),对照组注射生理盐水50 ml/kg(k0组),24h后取材,采用免疫组化染色和Western blot技术检测SD幼鼠海马GAP-43蛋白的表达,进行图像分析。结果注射氯胺酮后24h,免疫组化染色GAP-43蛋白阳性细胞计数:k0组为(85.4±15.2)个/mm2,k1组为(67.6±11.5)个/mm2,k2组为(36.6±9.7)个/mm2。Western blot GAP-43蛋白电泳条带灰度值k0组为186.375±7.45,k1组为165.754±7.012,k2组为158.852±8.721。k1组和k2组GAP-43蛋白的表达明显减少。结论注射氯胺酮后24h,SD大鼠海马神经元细胞GAP-43蛋白的表达下调,可能和氯胺酮神经毒性有关。