In this paper, we apply the tanh-coth method and traveling wave transformation method for solving Gardner equations, including (1 + 1)-Gardner and (2 + 1)- Gardner equations. The tanh-coth method proved to be reliable...In this paper, we apply the tanh-coth method and traveling wave transformation method for solving Gardner equations, including (1 + 1)-Gardner and (2 + 1)- Gardner equations. The tanh-coth method proved to be reliable and effective in handling a large number of nonlinear dispersive and disperse equations. Through tanh-coth method, we get analytical expressions of soliton solutions of Gardner equations. The one-soliton solution is characterized by an infinite wing or infinite tail.展开更多
文摘In this paper, we apply the tanh-coth method and traveling wave transformation method for solving Gardner equations, including (1 + 1)-Gardner and (2 + 1)- Gardner equations. The tanh-coth method proved to be reliable and effective in handling a large number of nonlinear dispersive and disperse equations. Through tanh-coth method, we get analytical expressions of soliton solutions of Gardner equations. The one-soliton solution is characterized by an infinite wing or infinite tail.