Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite...The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a 206Pb/238U age of 757±7 Ma, representing the approximate age of the high-pressure (HP)- ultrahigh-pressure (UHP) metamorphic event during which the eclogite was formed. The outer peripheral parts of the zircons, which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15 Ma for the approximate age of the emplacement of the granitic rock, and their outer parts, an age of 219±3 Ma for a similar or even the same fluid event. It is thus suggested that the HP-UHP metamorphism of the Bixiling eclogite facies rocks took place during the Neoproterozoic Jinningian, and the Indosinian age values may only represent a late event in the nature of fluid activity.展开更多
On the basis of a comprehensive study on the petrology, trace elements and isotopic geochemistry of the Xiangshan amphibolites, we suggest that the protoliths of the amphibolites were basalts formed in an island\|arc ...On the basis of a comprehensive study on the petrology, trace elements and isotopic geochemistry of the Xiangshan amphibolites, we suggest that the protoliths of the amphibolites were basalts formed in an island\|arc tectonic setting. The basaltic magma was derived from a slightly depleted mantle source with a small amount of crustal contamination. Assemblage of the rock\|forming minerals indicates that these amphibolites underwent a low\|grade metamorphism of amphibolite facies. According to the formation age (1113 Ma) and subsequent metamorphic age (726.6 Ma) of the basalts as well as the geological and geochemical features of these amphibolites, a tectonic model of Proterozoic oceanic island\|arc setting is proposed for central Jiangxi.展开更多
The garnet amphibolites from the newly identified Wanhe ophiolitic mélange in the Changning-Menglian suture zone(CMSZ)provide a probe to elucidate the evolution of the Triassic Palaeo-Tethys.An integrated petrolo...The garnet amphibolites from the newly identified Wanhe ophiolitic mélange in the Changning-Menglian suture zone(CMSZ)provide a probe to elucidate the evolution of the Triassic Palaeo-Tethys.An integrated petrologic,phase equilibria modeling and geochronological study of the garnet amphibolites,southeast Tibetan Plateau,shows that the garnet amphibolites have a peak mineral assemblage of garnet,glaucophane,lawsonite,chlorite,rutile,phengite and quartz,and a clockwise P-T path with a prograde segment from blueschist-facies to eclogite-facies with a peak-metamorphic P-T conditions of 2000–2100 MPa and 495–515℃,indicating a cold geothermal gradient of about 240–260℃/GPa.Theretrograde metamorphic P-T path is characterized by nearly isothermal decompression to lower amphibolite-facies and subsequent cooling to greenschist-facies.The metamorphic zircons have fractionated HREE patterns and significant negative Eu anomalies,and therefore the obtained zircon U-Pb age of 231±1.5 Ma is interpreted to be the timing of the amphibolite facies metamorphism occurrence.The present study probably indicates that the garnet amphibolites in the Wanhe ophiolitic mélange was the retrograded highpressure eclogite-facies blueschist,instead of the previously proposed eclogites,and the garnet amphibolites recorded the subduction and exhumation process of the Palaeo-Tethys Oceanic crust in the Triassic.展开更多
A model for the petrogenetic affinity and original geotectonic setting of ortho-amphibolites from the Obudu Plateau was tested using the distribution patterns of trace and rare-earth elements from the geochemical anal...A model for the petrogenetic affinity and original geotectonic setting of ortho-amphibolites from the Obudu Plateau was tested using the distribution patterns of trace and rare-earth elements from the geochemical analyses of twelve representative amphibolite samples. Discrimination plots, normalized patterns of the incompatible trace elements against average MORB, low ratios of Ba/Nb (9–23) and Ba/Ta (130–327) and other geochemical characteristics suggest that the protoliths were dominantly of tholeiitic MORB composition. The values of the ratios of La/Ta (8.13–10.8), Rb/Sr (0.04–0.07), Th/U (mainly 4.43–5.43) and Hf/Ta (2.35–2.88) further indicate that the ortho-amphibolites demonstrate E-type MORB characteristics. These features are related to substantial ocean floor divergent tectonic boundary setting rather than marginal basin tectonic setting. This evolutionary pattern appears to be controlled by limited progressive partial melting and fractional crystallization of a single mantle source region, irrespective, however, of variations due to local source heterogeneities. The tholeiitic magmas were most probably generated by hotspot activities on the constructive plate margins and subsequently modified by subduction-related low-K tholeiitic chemistry due to narrowing of a proto oceanic basin between the West African craton and eastern Sahara plate. A likely model, therefore, is that the amphibolites of the Obudu Plateau represent ophiolitic suites with characteristics of enriched mid-ocean floor tholeiites, which were deformed and metamorphosed during a reversed plate motion involving subduction and collision within the Obudu Plateau in the Pan-African orogenic episode.展开更多
The Kohistan terrane in N.Pakistan is sandwiched between the Shyok Suture in the north and Indus Suture in the south.The SE base of the terrane is occupied by the stratiform Sapat mafic\|ultramafic complex,which overr...The Kohistan terrane in N.Pakistan is sandwiched between the Shyok Suture in the north and Indus Suture in the south.The SE base of the terrane is occupied by the stratiform Sapat mafic\|ultramafic complex,which overrides the crust of the Indian plate along the Indus Suture.The complex was intruded into the base of a thick pile of metavolcanics (now amphibolites) of different environments (the Kamila belt).The Kamila amphibolite belt has a vast distribution in southern part of Kohistan.Previously,it was considered that the belt occupies the entire southern part of the Kohistan terrane between the Main Mantle Thrust (MMT) or Indus Suture (IS) in the south and the Chilas Complex in the north.In the Indus Valley,the unit was considered to overlie the Jijal Complex which occupies the hanging wall of the MMT.Recent mapping during this study has revealed that the Kamila amphibolite belt is in direct contact with the MMT only in the extreme eastern (i.e..,Bunar valley) and western parts of the Kohistan terrane.In the area between t he Babusar Pass in the east and the Indus Valley in the west,the belt is separated from the MMT by a basal ultramafic\|mafic layered complex in the hanging wall of the MMT,termed the Sapat Complex.To the north,the belt is bounded by the Chilas Complex which occupies an axial position in the Kohistan terrane.The Kamila amphibolites do not occur as a single,extensive body in the studied area but they occur in three main linear belts (from south to north as Bausar,Jal\|Niat,and Sumal)with small patches and screens within or between plutons of different compositions from diorites to granodiorites,trondhjemites and granites.Sumal is a thin slice within the Jal\|Niat belt.Babusar and Jal\|Niat are tholeiitic while Sumal is calc\|alkaline in nature.The tholeiitic amphibolites are further divided into two:Babusar amphibolites contain low TiO\-2 and very low Zr as compared to the Jal\|Niat.The Jal\|Niat amphibolites show flat patterns with slight increase in slope towards HFS and are unaffected by subduction,this implies that these rocks are developed in mid\|ocean ridge setting from a more heterogeneous and enriched mantle source.The Babusar amphibolites are depleted in LILE,show spiked pattern and the involvement of subduction zone fluids which indicate their affinity with within\|plate oceanic or continental settings.Sumal amphibolites are developed in subduction related island\|arc setting and may be produced due to partial melting of the metasomatized mantle or from a hetrogeneous mantle source.展开更多
The Fomopea granitic pluton is emplaced in gnessic and amphibolitic basement. These gneissic and amphibolitic basement rocks are represented in the pluton's body as sub-rounded, elongated or stretched xenoliths. Amph...The Fomopea granitic pluton is emplaced in gnessic and amphibolitic basement. These gneissic and amphibolitic basement rocks are represented in the pluton's body as sub-rounded, elongated or stretched xenoliths. Amphibolitic xenoliths display testimonies of two main tectonic events namely: (i) El flattening deformation event characterized by a NW-SE to E-W foliation with a best pole at 246/57 and a mineral stretched lineation with a best line at 293/47; and (ii) E2 compressive event typified by (1) N-S to NNE-SSW steeply dipping foliation; (2) S-type flexion-fold indicating a sinistral shear movement. These amphibolite rocks indicate a magnetic susceptibility magnitude (Km) range from 418 ~SI to 90092 IISI for 87% of the stations showing a ferromagnetic behavior. K-T curves reveal the presence of Ti-poor magnetite as susceptibility mineral carrier. Magnetic foliation and lineation suggest that the N-S strike direction observed in the Bamendou amphibolite is, as pointed out elsewhere in the Central African Fold Belt, of paramount importance in the tectonic evaluation of the Fomopea area, since it has most likely acted as major deformation phase in the second tectonic event in the belt.展开更多
The Gelmandeh Massive is located in the Central part of Iranian Microcontinent. Amphibolitic rocks occupy the main portion of Gelmandeh complex, which consists of hornblendite, garnet amphibolites, and gneiss. Geochem...The Gelmandeh Massive is located in the Central part of Iranian Microcontinent. Amphibolitic rocks occupy the main portion of Gelmandeh complex, which consists of hornblendite, garnet amphibolites, and gneiss. Geochemical investigations indicate that the ratio of Eu/Eu* separates samples into two categories: first category with ratio of Eu/Eu* > 1 and the second with ratio of Eu/Eu* < 1, which the former indicates an enriched mantle origin while the latter points to crustal contamination. Generally, amphibolites can be differentiated into two separate series. First series is characterized with calc-alkaline to alkaline composition with enriched mantle origin, and the second one has calc-alkaline to tholeiitic nature and it is of continental type that underwent crustal contamination within subduction zone. The microprobe electron analysis shows that the amphiboles were a member of the calcic group and hastingsite-tschermakite series. Geo-barometric studied and mineral paragenesis show that the metamorphism is of Barovian type with PT condition upto 7 K bar and 580°C.展开更多
In the Wadi Feiran area, amphibolites occur as inclusions, bands, linear bodies of variable thickness and irregular lenses in para-geneisses. Chemical evidence indicates that these amphibolites display an igneous orig...In the Wadi Feiran area, amphibolites occur as inclusions, bands, linear bodies of variable thickness and irregular lenses in para-geneisses. Chemical evidence indicates that these amphibolites display an igneous origin and were derived from magma essentially of tholelitic rather than alkaline composition; transitional in character between continental and island-arc. The chemistry of amphiboles, related to pressure and temperature conditions of metamorphism, showed that they were formed under low pressure and high temperature conditions.展开更多
Amphiboles are frequently observed in the medium to high grade metamorphic rocks of garnet bearing amphibolites from Thana.In present work,authors have discussed the mineral chemistry and nomenclature of amphiboles.On...Amphiboles are frequently observed in the medium to high grade metamorphic rocks of garnet bearing amphibolites from Thana.In present work,authors have discussed the mineral chemistry and nomenclature of amphiboles.On the basis of mineral chemistry,the amphibole from garnet bearing amphibolite are normally varies from Hastingsite,Ferropargasite to Tschermakite variety.展开更多
The amphibolites from the Mauranipur and Babina regions are located in the central part of the Bundelkhand Craton(BuC),northern India.During the geodynamic evolution of the BuC,these amphibolites underwent medium-grad...The amphibolites from the Mauranipur and Babina regions are located in the central part of the Bundelkhand Craton(BuC),northern India.During the geodynamic evolution of the BuC,these amphibolites underwent medium-grade metamorphism.This study combines textural observations of amphibolites from two distinct regions(Mauranipur and Babina)with mineral chemistry and phase equilibrium modelling.Observations suggest that the amphibolites of both areas have gone through three stages of metamorphism.The pre-peak stage in the amphibolites from the Mauranipur and Babina regions is marked by the assemblages Ep-Amp-Cpx-Pl-Ilm-Ru-Qz and Ep-Amp-Cpx-Pl-Ab-Ilm-Qz respectively;the peak metamorphic stage is characterized by the mineral assemblages Amp-Cpx-Pl-Ilm-Ru-Qz and Amp-Cpx-Pl-Ilm-Qz-H_(2)O,which is formed during the burial process,and the post-peak stage is represented by the assemblages Amp-Pl-Ilm-Ru-Qz and Amp-Pl-Ilm-Qz-H_(2)O respectively,which is formed by exhumation event.By applying the phase equilibria modelling in the NCFMASHTO system,the P-T conditions estimated from pre-peak,peak to post-peak stages are characterized as 6.7 kbar/510 oC,7.3 kbar/578ºC and>3.0 kbar/>585ºC,respectively,for the Mauranipur amphibolites;and 6.27 kbar/520ºC,5.2 kbar/805ºC and>3.0 kbar/>640ºC respectively for Babina amphibolites.The textural association and P-T conditions of both amphibolites suggest that these rocks were affected by burial metamorphism followed by an exhumation process during subduction tectonism in the BuC.展开更多
The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was infl...The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was influenced by Paleoproterozoic magmatism-metamorphism.The authors provide a comprehensive analysis of amphibolite in Laojinchang area,southern Jilin Province,through petrographic,geochemical,mineralogical,and zircon dating.The main findings are as follows:The mineral assemblage of amphibolite is Hb+Pl+Cpx+Bi+Kf+Q,characteristic of amphibolite facies;zircon U-Pb dating indicates that the metamorphic age of amphibolite is 1834±33 Ma;the amphibolite has geochemical characteristics of calcium alkaline,with depletion of Nb,Ta,Ti and P.The plagioclase in the amphibolite is oligoclase,belonging to acidic plagioclase.It is speculated that the protolith of the amphibolite is diorite;using geothermobarometer,the peak metamorphic P-T conditions of amphibolite are determined to be 536–593℃/3.4–5.0 kbar,and the post-peak conditions are 429–566℃/1.3–3.1 kbar.The above results indicate that the Paleoproterozoic metamorphism has been superimposed on Longgang Block,linked to a new orogenic event on the northern edge of North China Craton.展开更多
Benxi area, Northeastern China, is the main distribution area of Archean BIF-hosted iron deposits in China. In this area, Nanfen iron deposit is well known as the largest open-pit iron deposit not only in China but al...Benxi area, Northeastern China, is the main distribution area of Archean BIF-hosted iron deposits in China. In this area, Nanfen iron deposit is well known as the largest open-pit iron deposit not only in China but also in Asia. So far, the tectonic nature during Archean BIF formation period in Benxi area has been long disputed and the tectonic setting of Nanfen BIF had not been found. In this study, the geochemical characters of chlorite amphibolites closely associated with BIF have been investigated for the tectonic environment of Nanfen BIF. Chlortie amphibolites show the geochemical affinity to the back-arc basin basalt (BABB), indicating that the tectonic environment of Nanfen BIF is the back-arc basin. In conjunction with geological evidence of other BIFs at Benxi area, it is identified that BIF in Benxi area might be formed in the subduction-related back-arc basin, which provides a favorable sedimentary environment of Algoma-type BIF.展开更多
Occasionally, in complex inherent characteristics of certain rocks, especially anisotropic rocks it may be difficult to measure the uniaxial compressive strength UCS. However, the use of empirical relationships to eva...Occasionally, in complex inherent characteristics of certain rocks, especially anisotropic rocks it may be difficult to measure the uniaxial compressive strength UCS. However, the use of empirical relationships to evaluate the UCS of rock can be more practical and economical. Consequently, this study carried out to predict UCS from microfabrics properties of banded amphibolite rocks using multiple regression analysis. Based on statistical results, rock microfabric parameters, which adequately represent the UCS of a given rock type have been selected. The results show that grain size, shape factor and quartz content have high significant correlation with UCS at 95% confidence level. From multiple regression model, approximately 84% of the variance of the UCS can be estimated by the linear combination of these three parameters. However, according to model performance criteria: correlation coefficient (R = 0.919), variance account for (VAF = 97%) and root mean square error (RMSE = 4.16) the study clearly indicates that the developed model is reliable to predict the UCS. Finally, this approach can be easily extended to the modeling of rock strength in the absence of adequate geological information or abundant data.展开更多
Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures ...Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.展开更多
The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ra...The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically,the rocks can be classified as group 1(low Zr and La) and group 2(high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements,and a depletion in high-field strength elements,suggestive of a destructive plate margin setting.The protoliths of the all samples might have formed mostly by the partial melting of an enriched source,possibly coupled with the fractional crystallization of plagioclase,apatite,and titaniferous magnetite±olivine±clinopyroxene±amphibole in relation with subduction-related magmatism neighboring the Andeantype active margins of Gondwana.The group 2 samples could,however,be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1.The protoliths of the samples were metamorphosed up to amphibolite facies conditions,which destroys original igneous texture and mineral assemblages.Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610℃and~5 kbars,following a clockwise P-T-t path.展开更多
In this paper we reported the 40 Ar 39 Ar dating results of hornblendes in Grt Pl bearing amphibolite from the Larsemann Hills, East Antarctica. Their apparent ages respectively are 1586 Ma, 1011...In this paper we reported the 40 Ar 39 Ar dating results of hornblendes in Grt Pl bearing amphibolite from the Larsemann Hills, East Antarctica. Their apparent ages respectively are 1586 Ma, 1011 1080 Ma, 761 Ma, 529 582 Ma. Their plateau ages of 1036 Ma and 554 Ma as well as an Ar Ar isochron age of 1010 Ma have also been obtained respectively. These isotopic dating results for the first time by the Ar Ar method for hornblendes completely record almost all the structural metamorphic thermal events that this region experienced, and provide an answer to the controversial question on the structural metamorphic thermal events of this region in recent several years, namely, which one is more important, the late Proterozoic 1000 Ma event (Grenvillian) or the early Palaeozoic 500 Ma event ( Pan African), as well as whether the former exists or not. The 40 Ar 39 Ar dating results of hornblendes show that the Larsemann Hills experienced a complicated poly metamorphic evolutionary history, and their protoliths were probably formed in early to mid Proterozoic. The late Proterozoic 1000 Ma event (Grenvillian) has been confirmed to be a predominant tectonothermal event whilst the early Palaeozoic 500 Ma event (Pan African) has been confirmed just to be the last strong tectonothermal event in this region.展开更多
Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing’anling ...Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing’anling Orogen to the east.The study of metamorphism in Beishan area is of great significance to explain the tectonic evolution of Beishan orogen.According to the microstructures,mineral relationships,and geothermobarometry,we identified four stages of mineral assemblages from the garnet amphibolite sample:(1) a pre-peak stage,which is recorded by the cores of garnet together with core-inclusions of plagioclase(Pl1);(2) a peak stage,which is recorded by the mantles of garnet together with mantle-inclusions of plagioclase(Pl2)+amphibole(Amp1)+Ilmenite(Ilm1)+biotite(Bt1),developed at temperature-pressure(P-T) conditions of 818.9-836.5℃ and7.3-9.2 kbar;(3) a retrograde stage,which is recorded by garnet rims + plagioclase(Pl3)+amphibole(Amp2)+orthopyroxene(Opx1)+biotite(Bt2)+Ilmenite(Ilm2),developed at P-T conditions of 796.1-836.9℃ and5.6-7.5 kbar;(4) a symplectitic stage,which is recorded by plagioclase(Pl4)+orthopyroxene(Opx2)+amphibole(Amp3)+biotite(Bt3) symplectites,developed at P-T conditions of 732 ±59.6℃ and 6.1 ±0.6 kbar.Moreover,the U-Pb dating of the Beishan garnet amphibolite indicates an age of 301.9 ±4.7 Ma for the protolith and 281.4±8.5 Ma for the peak metamorphic age.Therefore,the mineral assemblage,P-T conditions,and zircon U-Pb ages of the Beishan garnet amphibolite define a near-isothermal decompression of a clockwise P-T-t(Pressure-Temperature-time) path,indicating the presence of over thickened continental crust in the Huaniushan arc until the Early Permian,then the southern Beishan area underwent a process of thinning of the continental crust.展开更多
The Yelapa-Chimo Metamorphic Complex forms part of the Jalisco Block in western Mexico and exposes a wide range of Early Cretaceous metamorphic rocks;such as paragneiss,orthogneiss,amphibolites,and migmatites.However,...The Yelapa-Chimo Metamorphic Complex forms part of the Jalisco Block in western Mexico and exposes a wide range of Early Cretaceous metamorphic rocks;such as paragneiss,orthogneiss,amphibolites,and migmatites.However,the pressure-temperature(P-T)conditions of metamorphism and partial melting remain poorly studied in the region.To elucidate metamorphic P-T conditions,phase equilibrium modelling was applied to two sillimanite-garnet paragneisses,one amphibole-orthogneiss,and one amphibolite.Sillimanite-garnet paragneisses exhibit a lepidoblastic texture with a biotite+sillimanite+kyanite+garnet+quartz+plagioclase+K-feldspar mineral assemblage.Amphibole-orthogneiss and amphibolite display a nematoblastic texture with an amphibole+(1)plagioclase+quartz+(1)titanite assemblage and an amphibole+(2)plagioclase+(2)titanite+ilmenite retrograde mineral assemblage.Pseudosections calculated for the two sillimanite-garnet paragneiss samples show P-T peak conditions at~6-7.5 kbar and~725-740℃.The results for amphibole-orthogneiss and the amphibolite yield P-T peak conditions at~8.5-10 kbar and~690-710℃.The mode models imply that metasedimentary and metaigneous units can produce up to~20 vol%and~10 vol%of melt,respectively.Modelling within a closed system during isobaric heating suggests that melt compositions of metasedimentary and metaigneous units are likely to have direct implications for the petrogenesis of the Puerto Vallarta Batholith.Our new data indicate that the Yelapa-Chimo Metamorphic Complex evolved through a metamorphic gradient between~23-33℃km^-1and the metamorphic rocks formed at depths between~22 km and~30 km with a burial rate of~2.0 km Ma^-1.Finally,the P-T data for both metasedimentary and metaigneous rocks provide new constraints on an accretionary framework,which is responsible for generating metamorphism and partial melting in the YelapaChimo Metamorphic Complex during the Early Cretaceous.展开更多
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha...Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.展开更多
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
文摘The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a 206Pb/238U age of 757±7 Ma, representing the approximate age of the high-pressure (HP)- ultrahigh-pressure (UHP) metamorphic event during which the eclogite was formed. The outer peripheral parts of the zircons, which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15 Ma for the approximate age of the emplacement of the granitic rock, and their outer parts, an age of 219±3 Ma for a similar or even the same fluid event. It is thus suggested that the HP-UHP metamorphism of the Bixiling eclogite facies rocks took place during the Neoproterozoic Jinningian, and the Indosinian age values may only represent a late event in the nature of fluid activity.
文摘On the basis of a comprehensive study on the petrology, trace elements and isotopic geochemistry of the Xiangshan amphibolites, we suggest that the protoliths of the amphibolites were basalts formed in an island\|arc tectonic setting. The basaltic magma was derived from a slightly depleted mantle source with a small amount of crustal contamination. Assemblage of the rock\|forming minerals indicates that these amphibolites underwent a low\|grade metamorphism of amphibolite facies. According to the formation age (1113 Ma) and subsequent metamorphic age (726.6 Ma) of the basalts as well as the geological and geochemical features of these amphibolites, a tectonic model of Proterozoic oceanic island\|arc setting is proposed for central Jiangxi.
基金supported by the National Natural Science Foundation of China(41802071,41773026 and 41303028)the Geological Survey of China-Nepal railway(202008000000180117).
文摘The garnet amphibolites from the newly identified Wanhe ophiolitic mélange in the Changning-Menglian suture zone(CMSZ)provide a probe to elucidate the evolution of the Triassic Palaeo-Tethys.An integrated petrologic,phase equilibria modeling and geochronological study of the garnet amphibolites,southeast Tibetan Plateau,shows that the garnet amphibolites have a peak mineral assemblage of garnet,glaucophane,lawsonite,chlorite,rutile,phengite and quartz,and a clockwise P-T path with a prograde segment from blueschist-facies to eclogite-facies with a peak-metamorphic P-T conditions of 2000–2100 MPa and 495–515℃,indicating a cold geothermal gradient of about 240–260℃/GPa.Theretrograde metamorphic P-T path is characterized by nearly isothermal decompression to lower amphibolite-facies and subsequent cooling to greenschist-facies.The metamorphic zircons have fractionated HREE patterns and significant negative Eu anomalies,and therefore the obtained zircon U-Pb age of 231±1.5 Ma is interpreted to be the timing of the amphibolite facies metamorphism occurrence.The present study probably indicates that the garnet amphibolites in the Wanhe ophiolitic mélange was the retrograded highpressure eclogite-facies blueschist,instead of the previously proposed eclogites,and the garnet amphibolites recorded the subduction and exhumation process of the Palaeo-Tethys Oceanic crust in the Triassic.
文摘A model for the petrogenetic affinity and original geotectonic setting of ortho-amphibolites from the Obudu Plateau was tested using the distribution patterns of trace and rare-earth elements from the geochemical analyses of twelve representative amphibolite samples. Discrimination plots, normalized patterns of the incompatible trace elements against average MORB, low ratios of Ba/Nb (9–23) and Ba/Ta (130–327) and other geochemical characteristics suggest that the protoliths were dominantly of tholeiitic MORB composition. The values of the ratios of La/Ta (8.13–10.8), Rb/Sr (0.04–0.07), Th/U (mainly 4.43–5.43) and Hf/Ta (2.35–2.88) further indicate that the ortho-amphibolites demonstrate E-type MORB characteristics. These features are related to substantial ocean floor divergent tectonic boundary setting rather than marginal basin tectonic setting. This evolutionary pattern appears to be controlled by limited progressive partial melting and fractional crystallization of a single mantle source region, irrespective, however, of variations due to local source heterogeneities. The tholeiitic magmas were most probably generated by hotspot activities on the constructive plate margins and subsequently modified by subduction-related low-K tholeiitic chemistry due to narrowing of a proto oceanic basin between the West African craton and eastern Sahara plate. A likely model, therefore, is that the amphibolites of the Obudu Plateau represent ophiolitic suites with characteristics of enriched mid-ocean floor tholeiites, which were deformed and metamorphosed during a reversed plate motion involving subduction and collision within the Obudu Plateau in the Pan-African orogenic episode.
文摘The Kohistan terrane in N.Pakistan is sandwiched between the Shyok Suture in the north and Indus Suture in the south.The SE base of the terrane is occupied by the stratiform Sapat mafic\|ultramafic complex,which overrides the crust of the Indian plate along the Indus Suture.The complex was intruded into the base of a thick pile of metavolcanics (now amphibolites) of different environments (the Kamila belt).The Kamila amphibolite belt has a vast distribution in southern part of Kohistan.Previously,it was considered that the belt occupies the entire southern part of the Kohistan terrane between the Main Mantle Thrust (MMT) or Indus Suture (IS) in the south and the Chilas Complex in the north.In the Indus Valley,the unit was considered to overlie the Jijal Complex which occupies the hanging wall of the MMT.Recent mapping during this study has revealed that the Kamila amphibolite belt is in direct contact with the MMT only in the extreme eastern (i.e..,Bunar valley) and western parts of the Kohistan terrane.In the area between t he Babusar Pass in the east and the Indus Valley in the west,the belt is separated from the MMT by a basal ultramafic\|mafic layered complex in the hanging wall of the MMT,termed the Sapat Complex.To the north,the belt is bounded by the Chilas Complex which occupies an axial position in the Kohistan terrane.The Kamila amphibolites do not occur as a single,extensive body in the studied area but they occur in three main linear belts (from south to north as Bausar,Jal\|Niat,and Sumal)with small patches and screens within or between plutons of different compositions from diorites to granodiorites,trondhjemites and granites.Sumal is a thin slice within the Jal\|Niat belt.Babusar and Jal\|Niat are tholeiitic while Sumal is calc\|alkaline in nature.The tholeiitic amphibolites are further divided into two:Babusar amphibolites contain low TiO\-2 and very low Zr as compared to the Jal\|Niat.The Jal\|Niat amphibolites show flat patterns with slight increase in slope towards HFS and are unaffected by subduction,this implies that these rocks are developed in mid\|ocean ridge setting from a more heterogeneous and enriched mantle source.The Babusar amphibolites are depleted in LILE,show spiked pattern and the involvement of subduction zone fluids which indicate their affinity with within\|plate oceanic or continental settings.Sumal amphibolites are developed in subduction related island\|arc setting and may be produced due to partial melting of the metasomatized mantle or from a hetrogeneous mantle source.
基金support from the IRD-CORUS project "Concentrations minérales en Afrique" of M. Jessell and J.L. Bouchez for LMTG(Toulouse)
文摘The Fomopea granitic pluton is emplaced in gnessic and amphibolitic basement. These gneissic and amphibolitic basement rocks are represented in the pluton's body as sub-rounded, elongated or stretched xenoliths. Amphibolitic xenoliths display testimonies of two main tectonic events namely: (i) El flattening deformation event characterized by a NW-SE to E-W foliation with a best pole at 246/57 and a mineral stretched lineation with a best line at 293/47; and (ii) E2 compressive event typified by (1) N-S to NNE-SSW steeply dipping foliation; (2) S-type flexion-fold indicating a sinistral shear movement. These amphibolite rocks indicate a magnetic susceptibility magnitude (Km) range from 418 ~SI to 90092 IISI for 87% of the stations showing a ferromagnetic behavior. K-T curves reveal the presence of Ti-poor magnetite as susceptibility mineral carrier. Magnetic foliation and lineation suggest that the N-S strike direction observed in the Bamendou amphibolite is, as pointed out elsewhere in the Central African Fold Belt, of paramount importance in the tectonic evaluation of the Fomopea area, since it has most likely acted as major deformation phase in the second tectonic event in the belt.
文摘The Gelmandeh Massive is located in the Central part of Iranian Microcontinent. Amphibolitic rocks occupy the main portion of Gelmandeh complex, which consists of hornblendite, garnet amphibolites, and gneiss. Geochemical investigations indicate that the ratio of Eu/Eu* separates samples into two categories: first category with ratio of Eu/Eu* > 1 and the second with ratio of Eu/Eu* < 1, which the former indicates an enriched mantle origin while the latter points to crustal contamination. Generally, amphibolites can be differentiated into two separate series. First series is characterized with calc-alkaline to alkaline composition with enriched mantle origin, and the second one has calc-alkaline to tholeiitic nature and it is of continental type that underwent crustal contamination within subduction zone. The microprobe electron analysis shows that the amphiboles were a member of the calcic group and hastingsite-tschermakite series. Geo-barometric studied and mineral paragenesis show that the metamorphism is of Barovian type with PT condition upto 7 K bar and 580°C.
文摘In the Wadi Feiran area, amphibolites occur as inclusions, bands, linear bodies of variable thickness and irregular lenses in para-geneisses. Chemical evidence indicates that these amphibolites display an igneous origin and were derived from magma essentially of tholelitic rather than alkaline composition; transitional in character between continental and island-arc. The chemistry of amphiboles, related to pressure and temperature conditions of metamorphism, showed that they were formed under low pressure and high temperature conditions.
文摘Amphiboles are frequently observed in the medium to high grade metamorphic rocks of garnet bearing amphibolites from Thana.In present work,authors have discussed the mineral chemistry and nomenclature of amphiboles.On the basis of mineral chemistry,the amphibole from garnet bearing amphibolite are normally varies from Hastingsite,Ferropargasite to Tschermakite variety.
文摘The amphibolites from the Mauranipur and Babina regions are located in the central part of the Bundelkhand Craton(BuC),northern India.During the geodynamic evolution of the BuC,these amphibolites underwent medium-grade metamorphism.This study combines textural observations of amphibolites from two distinct regions(Mauranipur and Babina)with mineral chemistry and phase equilibrium modelling.Observations suggest that the amphibolites of both areas have gone through three stages of metamorphism.The pre-peak stage in the amphibolites from the Mauranipur and Babina regions is marked by the assemblages Ep-Amp-Cpx-Pl-Ilm-Ru-Qz and Ep-Amp-Cpx-Pl-Ab-Ilm-Qz respectively;the peak metamorphic stage is characterized by the mineral assemblages Amp-Cpx-Pl-Ilm-Ru-Qz and Amp-Cpx-Pl-Ilm-Qz-H_(2)O,which is formed during the burial process,and the post-peak stage is represented by the assemblages Amp-Pl-Ilm-Ru-Qz and Amp-Pl-Ilm-Qz-H_(2)O respectively,which is formed by exhumation event.By applying the phase equilibria modelling in the NCFMASHTO system,the P-T conditions estimated from pre-peak,peak to post-peak stages are characterized as 6.7 kbar/510 oC,7.3 kbar/578ºC and>3.0 kbar/>585ºC,respectively,for the Mauranipur amphibolites;and 6.27 kbar/520ºC,5.2 kbar/805ºC and>3.0 kbar/>640ºC respectively for Babina amphibolites.The textural association and P-T conditions of both amphibolites suggest that these rocks were affected by burial metamorphism followed by an exhumation process during subduction tectonism in the BuC.
基金Supported by projects of the National Natural Science Foundation of China(Nos.42172213,42372255).
文摘The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was influenced by Paleoproterozoic magmatism-metamorphism.The authors provide a comprehensive analysis of amphibolite in Laojinchang area,southern Jilin Province,through petrographic,geochemical,mineralogical,and zircon dating.The main findings are as follows:The mineral assemblage of amphibolite is Hb+Pl+Cpx+Bi+Kf+Q,characteristic of amphibolite facies;zircon U-Pb dating indicates that the metamorphic age of amphibolite is 1834±33 Ma;the amphibolite has geochemical characteristics of calcium alkaline,with depletion of Nb,Ta,Ti and P.The plagioclase in the amphibolite is oligoclase,belonging to acidic plagioclase.It is speculated that the protolith of the amphibolite is diorite;using geothermobarometer,the peak metamorphic P-T conditions of amphibolite are determined to be 536–593℃/3.4–5.0 kbar,and the post-peak conditions are 429–566℃/1.3–3.1 kbar.The above results indicate that the Paleoproterozoic metamorphism has been superimposed on Longgang Block,linked to a new orogenic event on the northern edge of North China Craton.
文摘Benxi area, Northeastern China, is the main distribution area of Archean BIF-hosted iron deposits in China. In this area, Nanfen iron deposit is well known as the largest open-pit iron deposit not only in China but also in Asia. So far, the tectonic nature during Archean BIF formation period in Benxi area has been long disputed and the tectonic setting of Nanfen BIF had not been found. In this study, the geochemical characters of chlorite amphibolites closely associated with BIF have been investigated for the tectonic environment of Nanfen BIF. Chlortie amphibolites show the geochemical affinity to the back-arc basin basalt (BABB), indicating that the tectonic environment of Nanfen BIF is the back-arc basin. In conjunction with geological evidence of other BIFs at Benxi area, it is identified that BIF in Benxi area might be formed in the subduction-related back-arc basin, which provides a favorable sedimentary environment of Algoma-type BIF.
文摘Occasionally, in complex inherent characteristics of certain rocks, especially anisotropic rocks it may be difficult to measure the uniaxial compressive strength UCS. However, the use of empirical relationships to evaluate the UCS of rock can be more practical and economical. Consequently, this study carried out to predict UCS from microfabrics properties of banded amphibolite rocks using multiple regression analysis. Based on statistical results, rock microfabric parameters, which adequately represent the UCS of a given rock type have been selected. The results show that grain size, shape factor and quartz content have high significant correlation with UCS at 95% confidence level. From multiple regression model, approximately 84% of the variance of the UCS can be estimated by the linear combination of these three parameters. However, according to model performance criteria: correlation coefficient (R = 0.919), variance account for (VAF = 97%) and root mean square error (RMSE = 4.16) the study clearly indicates that the developed model is reliable to predict the UCS. Finally, this approach can be easily extended to the modeling of rock strength in the absence of adequate geological information or abundant data.
基金the National Natural Science Foundation of China(Grant Nos.41772043 and 41802043)the Chinese Academy of Sciences“Light of West China”Program(Dawei Fan,2017 and Jingui Xu,2019)+1 种基金the Youth Innovation Promotion Association CAS(Dawei Fan,2018434)the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province(Dawei Fan,[2019]10).
文摘Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.
基金Selcuk University's(Konya,Turkey)Scientific Research Fund for its support,and to Professor Mehmet Arslan(Karadeniz Technical University,Turkey)for improving the manuscript.
文摘The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically,the rocks can be classified as group 1(low Zr and La) and group 2(high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements,and a depletion in high-field strength elements,suggestive of a destructive plate margin setting.The protoliths of the all samples might have formed mostly by the partial melting of an enriched source,possibly coupled with the fractional crystallization of plagioclase,apatite,and titaniferous magnetite±olivine±clinopyroxene±amphibole in relation with subduction-related magmatism neighboring the Andeantype active margins of Gondwana.The group 2 samples could,however,be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1.The protoliths of the samples were metamorphosed up to amphibolite facies conditions,which destroys original igneous texture and mineral assemblages.Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610℃and~5 kbars,following a clockwise P-T-t path.
文摘In this paper we reported the 40 Ar 39 Ar dating results of hornblendes in Grt Pl bearing amphibolite from the Larsemann Hills, East Antarctica. Their apparent ages respectively are 1586 Ma, 1011 1080 Ma, 761 Ma, 529 582 Ma. Their plateau ages of 1036 Ma and 554 Ma as well as an Ar Ar isochron age of 1010 Ma have also been obtained respectively. These isotopic dating results for the first time by the Ar Ar method for hornblendes completely record almost all the structural metamorphic thermal events that this region experienced, and provide an answer to the controversial question on the structural metamorphic thermal events of this region in recent several years, namely, which one is more important, the late Proterozoic 1000 Ma event (Grenvillian) or the early Palaeozoic 500 Ma event ( Pan African), as well as whether the former exists or not. The 40 Ar 39 Ar dating results of hornblendes show that the Larsemann Hills experienced a complicated poly metamorphic evolutionary history, and their protoliths were probably formed in early to mid Proterozoic. The late Proterozoic 1000 Ma event (Grenvillian) has been confirmed to be a predominant tectonothermal event whilst the early Palaeozoic 500 Ma event (Pan African) has been confirmed just to be the last strong tectonothermal event in this region.
基金Financial support for this study was jointly provided by the Geological and Mineral Survey in Nalati-Yingmaotuo area of Tianshan-Beishan metallogenic belt (DD20160009)the National Natural Science Foundation of China (Grant Nos. 41572179,41872218,41421002 and 41372204)
文摘Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing’anling Orogen to the east.The study of metamorphism in Beishan area is of great significance to explain the tectonic evolution of Beishan orogen.According to the microstructures,mineral relationships,and geothermobarometry,we identified four stages of mineral assemblages from the garnet amphibolite sample:(1) a pre-peak stage,which is recorded by the cores of garnet together with core-inclusions of plagioclase(Pl1);(2) a peak stage,which is recorded by the mantles of garnet together with mantle-inclusions of plagioclase(Pl2)+amphibole(Amp1)+Ilmenite(Ilm1)+biotite(Bt1),developed at temperature-pressure(P-T) conditions of 818.9-836.5℃ and7.3-9.2 kbar;(3) a retrograde stage,which is recorded by garnet rims + plagioclase(Pl3)+amphibole(Amp2)+orthopyroxene(Opx1)+biotite(Bt2)+Ilmenite(Ilm2),developed at P-T conditions of 796.1-836.9℃ and5.6-7.5 kbar;(4) a symplectitic stage,which is recorded by plagioclase(Pl4)+orthopyroxene(Opx2)+amphibole(Amp3)+biotite(Bt3) symplectites,developed at P-T conditions of 732 ±59.6℃ and 6.1 ±0.6 kbar.Moreover,the U-Pb dating of the Beishan garnet amphibolite indicates an age of 301.9 ±4.7 Ma for the protolith and 281.4±8.5 Ma for the peak metamorphic age.Therefore,the mineral assemblage,P-T conditions,and zircon U-Pb ages of the Beishan garnet amphibolite define a near-isothermal decompression of a clockwise P-T-t(Pressure-Temperature-time) path,indicating the presence of over thickened continental crust in the Huaniushan arc until the Early Permian,then the southern Beishan area underwent a process of thinning of the continental crust.
基金funded by Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica(PAPIIT)grant IN112314。
文摘The Yelapa-Chimo Metamorphic Complex forms part of the Jalisco Block in western Mexico and exposes a wide range of Early Cretaceous metamorphic rocks;such as paragneiss,orthogneiss,amphibolites,and migmatites.However,the pressure-temperature(P-T)conditions of metamorphism and partial melting remain poorly studied in the region.To elucidate metamorphic P-T conditions,phase equilibrium modelling was applied to two sillimanite-garnet paragneisses,one amphibole-orthogneiss,and one amphibolite.Sillimanite-garnet paragneisses exhibit a lepidoblastic texture with a biotite+sillimanite+kyanite+garnet+quartz+plagioclase+K-feldspar mineral assemblage.Amphibole-orthogneiss and amphibolite display a nematoblastic texture with an amphibole+(1)plagioclase+quartz+(1)titanite assemblage and an amphibole+(2)plagioclase+(2)titanite+ilmenite retrograde mineral assemblage.Pseudosections calculated for the two sillimanite-garnet paragneiss samples show P-T peak conditions at~6-7.5 kbar and~725-740℃.The results for amphibole-orthogneiss and the amphibolite yield P-T peak conditions at~8.5-10 kbar and~690-710℃.The mode models imply that metasedimentary and metaigneous units can produce up to~20 vol%and~10 vol%of melt,respectively.Modelling within a closed system during isobaric heating suggests that melt compositions of metasedimentary and metaigneous units are likely to have direct implications for the petrogenesis of the Puerto Vallarta Batholith.Our new data indicate that the Yelapa-Chimo Metamorphic Complex evolved through a metamorphic gradient between~23-33℃km^-1and the metamorphic rocks formed at depths between~22 km and~30 km with a burial rate of~2.0 km Ma^-1.Finally,the P-T data for both metasedimentary and metaigneous rocks provide new constraints on an accretionary framework,which is responsible for generating metamorphism and partial melting in the YelapaChimo Metamorphic Complex during the Early Cretaceous.
基金financially supported by the National Key Research and Development Program of China(grant No.2016YFC0600310)the 973 Project(2015CB452600,2011CB4031006)+2 种基金the National Natural Science Foundation of China(grants No.41872083,41472076)the Program of the China Geological Survey(grants No.DD20160024–07,DD20179172)the China Fundamental Research Funds for the Central Universities(grant No.2652018133).
文摘Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.