In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Municipal Solid Waste(MSW)was converted into high-grade solid fuels(biochar)and gaseous product via thermal pyrolysis under pyrolytic gas atmosphere.The experiment was carried out in a packed-bed reactor at the temper...Municipal Solid Waste(MSW)was converted into high-grade solid fuels(biochar)and gaseous product via thermal pyrolysis under pyrolytic gas atmosphere.The experiment was carried out in a packed-bed reactor at the temperature range of 600-800℃ in both atmospheres of N_(2) and pyrolytic gas.Gas,liquid,and solid products were analyzed by gas chromatograph and elemental analysis.Amount of biochar obtained from both atmospheres were not significantly different.CH_(4) and CO_(2) in pyrolytic gas promoted the release of volatile in the MSW,resulting in lower ratio of VM/FC,ca.0.13.The atomic ratios of O/C and H/C were around 0.02-0.11 and 0.005-0.035,respectively.These values were equivalent to anthracite coal type.On the other hand,the liquid fuel yield under pyrolytic gas condition was found to be higher,compared with that under N_(2) condition.In addition,the enhancement of H_(2) and CO production was accompanied by the decrease in CH_(4) and CO_(2) output.Overall,the operating condition at 800℃ or higher with reaction times longer than 4 min were recommended for production of biochar with fuel qualities approaching anthracite coal.展开更多
The quality of Yi'an gas coal before and after low temperature upgrading under either a N2 or H2 atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke qualit...The quality of Yi'an gas coal before and after low temperature upgrading under either a N2 or H2 atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke quality was analyzed. The results show that the carboxyl and phenolic hydroxyls in the coal molecular structure are removed after upgrading by low temperature pyrolysis under either N2 or Hz atmospheres. This improves coal caking properties to a certain extent. The upgrading effect under a Hz atmosphere is remarkably better than the effect observed after upgrading under N2. Compared to coke obtained from raw coal, the compressiveand micro-strength of the cokes obtained from upgraded coal are greatly improved. The effect on coke reactivity with CO2 is not significant. The best upgrading temperature for Yi'an gas coal under either a N2 or H2 atmosphere is 250 or 275 ℃ respectively.展开更多
Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robus...Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides.展开更多
A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distr...A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.展开更多
The content of NO_2 in the atmosphere is one of the important factors for atmospheric environmental appreciation. An automatic solar spectrophotometer (ASS) system has been developed in order to observe the content of...The content of NO_2 in the atmosphere is one of the important factors for atmospheric environmental appreciation. An automatic solar spectrophotometer (ASS) system has been developed in order to observe the content of NO_2 in the atmosphere. The column content of atmospheric NO_2 has been obtained by use of radiative transfer equation and maximum resembled method, through the ground-based observation of direct solar radiative spectrum of 4470—4490. Some months' observations of NO_2 have been made in the suburbs of Beijing. The results have been discussed here.展开更多
Research on pollution characteristics and toxicities of emerging polycyclic aromatic sulfur heterocycles(PASHs) in PM_(2.5) has not been reported due to the lack of analytical method with the needed performance.In the...Research on pollution characteristics and toxicities of emerging polycyclic aromatic sulfur heterocycles(PASHs) in PM_(2.5) has not been reported due to the lack of analytical method with the needed performance.In the present study,a novel method for the determination of 14 PASHs in PM_(2.5) was developed using atmospheric pressure gas chro matography-tandem mass spectrometry(APGC-MS/MS).Atmospheric pressure chemical ionization was operated with multiple reaction monitoring in positive ionization mode.High sensitivity(method detection limit <1.673 pg/m^(3)),acceptable re coveries(67.6%-120.8%) and precisions(RSD of 2.2%-15.4%) were obtained.The method was successfully applied for analyzing PASHs in 10 PM_(2.5) samples collected from Taiyuan,a typical industrial city in China,in 2016,The total concentrations were from 929 pg/m^(3) to 14,593 pg/m^(3).The determined levels indicated that further investigations on environmental fate and toxicities of PM_(2.5)-bound PASHs may be needed.展开更多
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金support of the National-International Cooperation Project(2016YFE0202000 and 2017YFE0107600)Zhejiang Natural Science Foundation Project(LY 17E060005).
文摘Municipal Solid Waste(MSW)was converted into high-grade solid fuels(biochar)and gaseous product via thermal pyrolysis under pyrolytic gas atmosphere.The experiment was carried out in a packed-bed reactor at the temperature range of 600-800℃ in both atmospheres of N_(2) and pyrolytic gas.Gas,liquid,and solid products were analyzed by gas chromatograph and elemental analysis.Amount of biochar obtained from both atmospheres were not significantly different.CH_(4) and CO_(2) in pyrolytic gas promoted the release of volatile in the MSW,resulting in lower ratio of VM/FC,ca.0.13.The atomic ratios of O/C and H/C were around 0.02-0.11 and 0.005-0.035,respectively.These values were equivalent to anthracite coal type.On the other hand,the liquid fuel yield under pyrolytic gas condition was found to be higher,compared with that under N_(2) condition.In addition,the enhancement of H_(2) and CO production was accompanied by the decrease in CH_(4) and CO_(2) output.Overall,the operating condition at 800℃ or higher with reaction times longer than 4 min were recommended for production of biochar with fuel qualities approaching anthracite coal.
文摘The quality of Yi'an gas coal before and after low temperature upgrading under either a N2 or H2 atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke quality was analyzed. The results show that the carboxyl and phenolic hydroxyls in the coal molecular structure are removed after upgrading by low temperature pyrolysis under either N2 or Hz atmospheres. This improves coal caking properties to a certain extent. The upgrading effect under a Hz atmosphere is remarkably better than the effect observed after upgrading under N2. Compared to coke obtained from raw coal, the compressiveand micro-strength of the cokes obtained from upgraded coal are greatly improved. The effect on coke reactivity with CO2 is not significant. The best upgrading temperature for Yi'an gas coal under either a N2 or H2 atmosphere is 250 or 275 ℃ respectively.
基金supported by the Federal Ministry of Education and Research under the grant reference number 03SF0433A "MEOKATS"
文摘Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides.
基金Project supported by the National High Technology Research and Development of China (Grant No.2009AA063006)the National Natural Science Foundation of China (Grant No. 40905010)the Special Project of Environmental Nonprofit Industry Research,China (Grant No. 201109007)
文摘A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.
文摘The content of NO_2 in the atmosphere is one of the important factors for atmospheric environmental appreciation. An automatic solar spectrophotometer (ASS) system has been developed in order to observe the content of NO_2 in the atmosphere. The column content of atmospheric NO_2 has been obtained by use of radiative transfer equation and maximum resembled method, through the ground-based observation of direct solar radiative spectrum of 4470—4490. Some months' observations of NO_2 have been made in the suburbs of Beijing. The results have been discussed here.
基金financial support from the National Natural Science Foundation of China (Nos.91843301 and 91543202)National Key Research and Development Program Cooperation on Scientific and Technological Innovation in Hong Kong,Macao and Taiwan (No. 2017YFE0191000)。
文摘Research on pollution characteristics and toxicities of emerging polycyclic aromatic sulfur heterocycles(PASHs) in PM_(2.5) has not been reported due to the lack of analytical method with the needed performance.In the present study,a novel method for the determination of 14 PASHs in PM_(2.5) was developed using atmospheric pressure gas chro matography-tandem mass spectrometry(APGC-MS/MS).Atmospheric pressure chemical ionization was operated with multiple reaction monitoring in positive ionization mode.High sensitivity(method detection limit <1.673 pg/m^(3)),acceptable re coveries(67.6%-120.8%) and precisions(RSD of 2.2%-15.4%) were obtained.The method was successfully applied for analyzing PASHs in 10 PM_(2.5) samples collected from Taiyuan,a typical industrial city in China,in 2016,The total concentrations were from 929 pg/m^(3) to 14,593 pg/m^(3).The determined levels indicated that further investigations on environmental fate and toxicities of PM_(2.5)-bound PASHs may be needed.