Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and t...Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.展开更多
In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization charact...In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.展开更多
Computational fluid dynamics( CFD) is used to investigate a new type of two-chamber natural gas distributor,which has a natural gas inlet and nine nozzle outlets. The uniformity at the outlet of distributor is practic...Computational fluid dynamics( CFD) is used to investigate a new type of two-chamber natural gas distributor,which has a natural gas inlet and nine nozzle outlets. The uniformity at the outlet of distributor is practice proven to have significant degree influence on its comprehensive performance. To improve the uniformity at the nozzles of the gas distributor,CFD modeling with the RNG k-ε turbulence model is undertaken to understand the mass flow rate of nozzles with reference to different length of chambers and the most optimal length is obtained. The internal flow pattern of the natural gas distributor is analyzed. It is found that the local maximum deviation of the nozzle outflow rate increases with the increase of chambers length when the length is more than 64 mm. The results provide useful suggestions for the optimal design of two-chamber natural gas distributor.展开更多
The structure of the gas distributor is closely related to the production efficiency of organosilicon monomers.To improve the production efficiency of organosilicon monomers,this study uses Eulerian-Eulerian two fluid...The structure of the gas distributor is closely related to the production efficiency of organosilicon monomers.To improve the production efficiency of organosilicon monomers,this study uses Eulerian-Eulerian two fluid model and proposes a design formula for the gas distributor to optimize the gas distributor.It is proposed that the pressure drop of the gas distributor,the velocity nonuniformity coefficient,the relative standard deviation of the solid holdup,and the solid particle dispersion coefficient are used to evaluate the performance of the gas distributor.The results show that the performance of the gas distributor is significantly improved when the opening ratioΦ=0.53%is optimized toΦ=0.18%,in which the relative standard deviation of the solid holdup is reduced by 22%,and the solid particle dispersion coefficient is reduced by 40%.On this basis,this article studies the influence of different arrangements of vent holes on gas-solid fluidization characteristics.The results show that the circular arrangement of vent holes is helpful to the mixing of gas and solid.展开更多
The effects of internals and gas distributors on the local dynamics of the bubbles in the conventional gas-solid fluidized bed were studied.Mesh-type internals with different opening areas(50%,70%and 90%)and different...The effects of internals and gas distributors on the local dynamics of the bubbles in the conventional gas-solid fluidized bed were studied.Mesh-type internals with different opening areas(50%,70%and 90%)and different arrangements(two-layer and four-layer);and a sintered plate with a smaller pore size(1μm)and a perforated plate with a larger pore size as distributors were investigated.Differential pressure drops and local solids holdups were measured under various superficial gas velocities to compare the performances of the different types of internals and distributors.The instantaneous solids holdup signals from the optical fibre probe were used to further examine the local bubble dynamics in detail.Smaller bubbles were found,with the installation of internals or using the sintered plate,resulting in lower pressure drops and a higher bed expansion.Internals with reduced opening area or distributor with smaller pore size further leads to a higher changeover rate between the bubbles and dense phase,both axially and radially,and hence a better gas-solid contacting and an earlier transition to the turbulent flow regime of the bed.展开更多
Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the exper...Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the experimental data. It has been shown that the simulation results from the standard k-ε model have the best match with the experimental data. Based on this model, the gas flow field in the venturi diffuser and riser was analyzed by the concept of velocity nonuniformity and dead zone percentage. Both the nonuniformity of gas velocity and the dead zone percentage reach the maximum at the venturi outlet due to the effect of the vortex. At the same time, it provides a good platform for the further optimization of the inlet configuration of circulating fluidized bed reactor.展开更多
All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distributi...All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.展开更多
文摘Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.
基金supported by the China Ocean Mineral Resources Research&Development Program(DY125-15-T-08)the National Natural Science Foundation of China(21176026,21176242)。
文摘In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.
基金Sponsored by the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(Grant No.NR2013K04)the Higher School Science and Technology Development Fund of Tianjin(Grant No.20130909)
文摘Computational fluid dynamics( CFD) is used to investigate a new type of two-chamber natural gas distributor,which has a natural gas inlet and nine nozzle outlets. The uniformity at the outlet of distributor is practice proven to have significant degree influence on its comprehensive performance. To improve the uniformity at the nozzles of the gas distributor,CFD modeling with the RNG k-ε turbulence model is undertaken to understand the mass flow rate of nozzles with reference to different length of chambers and the most optimal length is obtained. The internal flow pattern of the natural gas distributor is analyzed. It is found that the local maximum deviation of the nozzle outflow rate increases with the increase of chambers length when the length is more than 64 mm. The results provide useful suggestions for the optimal design of two-chamber natural gas distributor.
基金The authors are grateful to the financial support by the Science and Technology Planning Project of the Science and Technology Department of Yunnan Province(grant No.202002AB080002).
文摘The structure of the gas distributor is closely related to the production efficiency of organosilicon monomers.To improve the production efficiency of organosilicon monomers,this study uses Eulerian-Eulerian two fluid model and proposes a design formula for the gas distributor to optimize the gas distributor.It is proposed that the pressure drop of the gas distributor,the velocity nonuniformity coefficient,the relative standard deviation of the solid holdup,and the solid particle dispersion coefficient are used to evaluate the performance of the gas distributor.The results show that the performance of the gas distributor is significantly improved when the opening ratioΦ=0.53%is optimized toΦ=0.18%,in which the relative standard deviation of the solid holdup is reduced by 22%,and the solid particle dispersion coefficient is reduced by 40%.On this basis,this article studies the influence of different arrangements of vent holes on gas-solid fluidization characteristics.The results show that the circular arrangement of vent holes is helpful to the mixing of gas and solid.
文摘The effects of internals and gas distributors on the local dynamics of the bubbles in the conventional gas-solid fluidized bed were studied.Mesh-type internals with different opening areas(50%,70%and 90%)and different arrangements(two-layer and four-layer);and a sintered plate with a smaller pore size(1μm)and a perforated plate with a larger pore size as distributors were investigated.Differential pressure drops and local solids holdups were measured under various superficial gas velocities to compare the performances of the different types of internals and distributors.The instantaneous solids holdup signals from the optical fibre probe were used to further examine the local bubble dynamics in detail.Smaller bubbles were found,with the installation of internals or using the sintered plate,resulting in lower pressure drops and a higher bed expansion.Internals with reduced opening area or distributor with smaller pore size further leads to a higher changeover rate between the bubbles and dense phase,both axially and radially,and hence a better gas-solid contacting and an earlier transition to the turbulent flow regime of the bed.
文摘Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the experimental data. It has been shown that the simulation results from the standard k-ε model have the best match with the experimental data. Based on this model, the gas flow field in the venturi diffuser and riser was analyzed by the concept of velocity nonuniformity and dead zone percentage. Both the nonuniformity of gas velocity and the dead zone percentage reach the maximum at the venturi outlet due to the effect of the vortex. At the same time, it provides a good platform for the further optimization of the inlet configuration of circulating fluidized bed reactor.
基金support from the Natural Sciences and Engineering Research Council(NSERC) of Canada
文摘All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.