期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical study of atmospheric-pressure argon plasma jet propagating into ambient nitrogen
1
作者 蒋园园 王艳辉 +2 位作者 胡亚敏 张佼 王德真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期17-28,共12页
A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas vel... A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas velocity on the dynamic characteristics of the jet. The results show that the Ar jet exhibits a cylindrical-shaped channel and the jet channel gradually shrinks with the increase in propagation length. The jet propagation velocity varies with time. Inside the dielectric tube, the plasma jet accelerates propagation and reaches its maximum value near the nozzle. Exiting the tube, its velocity quickly decreases and when approaching the metal plane,the decrease in jet velocity slows down. The increase in gas speed results in the variation of jet spatial distribution. The electron density presents a solid structure at lower gas flow speeds,whereas an annular structure can be observed under the higher gas flow velocity in the ionization head. The jet length increases with the flow velocity. However, when the flow velocity exceeds a critical value, the increase in the rate of the plasma jet length slows down. In addition, the gas velocity effect on the generation and transport of the reactive particles is also studied and discussed. 展开更多
关键词 atmospheric-pressure argon plasma jet gas flow velocity 2D simulation propagation characteristics reactive species
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部