Stable austenitic structure in medical stainless steels is basically required for surgical implantation. A weak magnetism was found in a high nitrogen nickel-free austenitic stainless steel for cardiovascular stent ap...Stable austenitic structure in medical stainless steels is basically required for surgical implantation. A weak magnetism was found in a high nitrogen nickel-free austenitic stainless steel for cardiovascular stent application. This magnetic behavior in high nitrogen stainless steel was investigated by optical microscopy, X-ray diffraction (XRD), electron probe microanalysis (EPMA) and superconducting quantum interference device (SQUID). The results showed that the magnetism came from the composition segregation of ferrite formation elements such as Cr and Mo in the steel and some 6-ferrites were locally formed during the pressurized electroslag remelting process. The magnetism of high nitrogen stainless steel could be eliminated by a proper high temperature gas nitriding (HTGN).展开更多
基金supported by National Natural Science Foundation of China(No.31000428)National Basic Research Program of China(973Program)(No.2012CB619101)
文摘Stable austenitic structure in medical stainless steels is basically required for surgical implantation. A weak magnetism was found in a high nitrogen nickel-free austenitic stainless steel for cardiovascular stent application. This magnetic behavior in high nitrogen stainless steel was investigated by optical microscopy, X-ray diffraction (XRD), electron probe microanalysis (EPMA) and superconducting quantum interference device (SQUID). The results showed that the magnetism came from the composition segregation of ferrite formation elements such as Cr and Mo in the steel and some 6-ferrites were locally formed during the pressurized electroslag remelting process. The magnetism of high nitrogen stainless steel could be eliminated by a proper high temperature gas nitriding (HTGN).