期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
Self-absorption effects of laser-induced breakdown spectroscopy under different gases and gas pressures 被引量:1
1
作者 王崧宁 张殿鑫 +6 位作者 陈楠 何亚雄 张红 柯川 许涛 陈永亮 赵勇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-162,共8页
The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma... The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability. 展开更多
关键词 self-absorption coefficient ambient gases gas pressure laser-induced breakdown spectroscopy
下载PDF
Effects of direct current discharge on the spatial distribution of cylindrical inductively-coupled plasma at different gas pressures
2
作者 滑跃 宋健 +2 位作者 郝泽宇 张改玲 任春生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第1期32-40,共9页
Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP... Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP) source. Their plasma characteristics, such as electron density, electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a 'convex' shape and 'saddle' shape at gas pressures of 3 mTorr and 150 mTorr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure. Moreover, in the operation of DC q- RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 mTorr where local electron kinetics is dominant, whereas plasma uniformity deteriorates at a low pressure of 3 mTorr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures. 展开更多
关键词 cylindrical inductively-coupled plasma DC RF hybrid discharge plasmauniformity gas pressure
下载PDF
An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures 被引量:2
3
作者 Zhenqi Guo Tao Liu +3 位作者 Lei Guo Xiuting Su Yan Zhang Sanpeng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期144-151,共8页
Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease... Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease the strength of the soil skeleton.So far,bubbles’structural morphology and evolution characteristics in soil skeleton lack research,and the influence of different gas reservoir pressures on bubbles are still unclear.The micro characteristics of bubbles in the same sediment sample were studied using an industrial CT scanning test system to solve these problems.Using the image processing software,the micro variation characteristics of gas-bearing sediments in gas reservoir pressure change are obtained.The results show that the number and volume of bubbles in different equivalent radius ranges will change regularly under different gas reservoir pressure.With the increase of gas reservoir pressure,the number and volume of tiny bubbles decrease.In contrast,the number and volume of large bubbles increase,and the gas content in different positions increases and occupies a dominant position,driving the reduction of pore water and soil skeleton movement. 展开更多
关键词 micro characteristics CT scanning gas content number and volume of bubbles gas reservoir pressure seabed sediments
下载PDF
Response characteristics of gas pressure under simultaneous static and dynamic load:Implication for coal and gas outburst mechanism 被引量:3
4
作者 Longyong Shu Liang Yuan +3 位作者 Qixian Li Wentao Xue Nannan Zhu Zhengshuai Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-171,共17页
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the... Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts. 展开更多
关键词 Coal and gas outburst gas pressure Dynamic load Outburst mechanism
下载PDF
Experimental investigations on effects of gas pressure on mechanical behaviors and failure characteristic of coals 被引量:1
5
作者 Yi Xue P.G.Ranjith +2 位作者 Feng Gao Zhizhen Zhang Songhe Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期412-428,共17页
The mechanical behavior of coal is the key factor affecting underground coal mining and coalbed methane extraction.In this study,triaxial compression and seepage tests were carried out on coal at different gas pressur... The mechanical behavior of coal is the key factor affecting underground coal mining and coalbed methane extraction.In this study,triaxial compression and seepage tests were carried out on coal at different gas pressures.The mechanical properties and failure process of coal were studied,as well as the acoustic emission(AE)and strain energy.The influence of gas pressure on the mechanical parameters of this coal was analyzed.Based on the conventional energy calculation formula,the pore pressure was introduced through the effective stress formula,and each energy component of coal containing gas was refined innovatively.The contribution of gas pressure to the total energy input and dissipation during loading was quantitatively described.Finally,the influence of gas pressure on coal strength was theo-retically analyzed from the perspectives of MohreCoulomb criterion and fracture mechanics.The results show that the total absorbed energy comprises the absorbed energy in the axial pressure direction(positive)and in the confining pressure direction(negative),as well as that induced by the pore pressure(initially negative and then positive).The absorbed energy in the axial pressure direction accounts for the main proportion of the total energy absorbed by coal.The quiet period of AE in the initial stage shortens,and AE activity increases during the pre-peak stage under high gas pressure.The fractal characteristics of AE in three stages are studied using the correlation dimension.The AE process has different forms of self-similarity in various deformation stages. 展开更多
关键词 COAL gas pressure Acoustic emission(AE) Strain energy Fractal characteristics
下载PDF
Self-sealing of fractures in indurated claystones measured by water and gas flow 被引量:1
6
作者 Chun-Liang Zhang Jean Talandier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期227-238,共12页
Self-sealing of fractures in the indurated Callovo-Oxfordian(COX)and Opalinus(OPA)claystones,which are considered as host rocks for disposal of radioactive waste,was investigated on artificially fractured samples.The ... Self-sealing of fractures in the indurated Callovo-Oxfordian(COX)and Opalinus(OPA)claystones,which are considered as host rocks for disposal of radioactive waste,was investigated on artificially fractured samples.The samples were extracted from four lithological facies relatively rich in clay mineral,carbonate and quartz,respectively.The self-sealing of fractures was measured by fracture closure,water permeability variation,gas penetration,and recovery of gas-induced pathways.Most of the fractured samples exhibited a dramatic reduction inwater permeability to low levels that is close to that of intact rock,depending on their mineralogical composition,fracture intensity,confining stress,and load duration.The self-sealing capacity of the clay-rich samples is higher than that of the carbonate-rich and sandy ones.Significant effects of sample size and fracture intensity were identified.The sealed fractures become gas-tight for certain in-jection pressures.However,the measured gas breakthrough pressures are still lower than the confining stresses.The gas-induced pathways can recover when contacting water.These important findings imply that fractures in such indurated claystones can effectively recover to hinder water transport but allow gas release under relatively low pressures without compromising the rock integrity. 展开更多
关键词 Claystone Self-sealing of fracture Fracture closure Water permeability gas breakthrough pressure Resealing of gas pathway
下载PDF
Revaluating coal permeability-gas pressure relation under various gas pressure differential conditions
7
作者 Chunguang Wang Hongxu Wang +5 位作者 Derek Elsworth Guanglei Cui Bingqian Li Meng Zhou Wenxin Li Jiyuan Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期203-216,共14页
Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal perme... Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal permeability to gas is assessed using the steady-state method, where the equivalent gas pressure in the coal is indexed to the average of upstream and downstream pressures of the coal, while ignoring the nonlinear gas pressure gradient along the gas fow path. For the fow of a compressible gas, the traditional method consistently underestimates the length/volume-averaged pressure and overestimates mean efective stress. The higher the pressure diferential within the sample, the greater the error between the true mean pressure for a compressible fuid and that assumed as the average between upstream and downstream pressures under typical reservoir conditions. A correction coefcient for the compressible fuid pressure asymptotes to approximately 1.3%, representing that the error in mean pressure and efective stress can be on the order of approximately 30%, particularly for highly pressure-sensitive permeabilities and compressibilities, further amplifying errors in evaluated reservoir properties. We utilized this volume-averaged pressure and efective stress to correct permeability and compressibility data reported in the literature. Both the corrected initial permeability and the corrected pore compressibility were found to be smaller than the uncorrected values, due to the underestimation of the true mean fuid pressure, resulting in an overestimation of reservoir permeability if not corrected. The correction coefcient for the initial permeability ranges from 0.6 to 0.1 (reservoir values are only approximately 40% to 90% of laboratory values), while the correction coefcient for pore compressibility remains at approximately 0.75 (reservoir values are only approximately 25% of laboratory value). Errors between the uncorrected and corrected parameters are quantifed under various factors, such as confning pressure, gas sorption, and temperature. By analyzing the evolutions of the initial permeability and pore compressibility, the coupling mechanisms of mechanical compression, adsorption swelling, and thermal expansion on the pore structure of the coal can be interpreted. These fndings can provide insights that are useful for assessing the sensitivity of coal permeability to gas pressure as truly representative of reservoir conditions. 展开更多
关键词 gas compressibility Coal permeability Pressure diferential Mean gas pressure
下载PDF
Effect of rock joints on lined rock caverns subjected to high internal gaspressure
8
作者 Davi Rodrigues Damasceno Johan Spross Fredrik Johansson 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1625-1635,共11页
The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,con... The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses. 展开更多
关键词 Lined rock cavern(LRC) Rock joints Strain concentrations Lining interaction Finite element(FE)analysis High gas pressure
下载PDF
Design and theoretical analysis of test system for propellants' gas pressure in warhead
9
作者 边晶晶 武震 《Journal of Measurement Science and Instrumentation》 CAS 2014年第1期10-14,共5页
Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 i... Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 is designed in order to acquire gas pressure during cluster bombs dispersion.To meet the requirement of low power consumption,the working states of system's modules during data acquisition are elaborated and the equation to calculate the gas pressure change during cylindrical center tube opening the hatch is deduced.The field test is conducted and good test results are obtained. 展开更多
关键词 warhead dispersion center tube explosion dispersion gas pressure storage test and measurement low power consumption
下载PDF
Experimental study of water curtain performance for gas storage in an underground cavern 被引量:15
10
作者 Zhongkui Li Kezhong Wang +1 位作者 Anmin Wang Hui Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期89-96,共8页
An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the tim... An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the time.This system is deployed over an artificial or natural underground cavern used for the storage of gas(or some other fluids) to prevent the gas from escaping through leakage paths in the rock mass.An experimental physical modeling system has been constructed to evaluate the performance of artificial water curtain systems under various conditions.These conditions include different spacings of caverns and cavern radii located below the natural groundwater level.The principles of the experiment,devices,design of the physical model,calculation of gas leakage,and evaluation of the critical gas pressure are presented in this paper.Experimental result shows that gas leakage is strongly affected by the spacing of water curtain boreholes,the critical gas pressure,and the number and proximity of storage caverns.The hydraulic connection between boreholes is observed to vary with depth or location,which suggests that the distribution of water-conducting joint sets along the boreholes is also variable.When designing the drainage system for a cavern,drainage holes should be orientated to maximize the frequency at which they encounter major joint sets and permeable intervals studying in order to maintain the seal on the cavern through water pressure.Our experimental results provide a significant contribution to the theoretical controls on water curtains,and they can be used to guide the design and construction of practical storage caverns. 展开更多
关键词 artificial water curtain model test storage cavern gas pressure
下载PDF
Gas seepage equation of deep mined coal seams and its application 被引量:30
11
作者 HU Guo-zhong WANG Hong-tu TAN Hai-xiang FAN Xiao-gang YUAN Zhi-gang 《Journal of China University of Mining and Technology》 EI 2008年第4期483-487,共5页
In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal se... In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams. 展开更多
关键词 deep mining in-situ stress field geothermal temperature field gas seepage equation of coal seam gas pressure
下载PDF
Quick determination of gas pressure before uncovering coal in cross-cuts and shafts 被引量:22
12
作者 JIANG Cheng-lin WANG Chen LI Xiao-wei CHEN Yu-jia XIE Qing-xue LIU Ying TANG Jun YANG Fei-long WANG Fa-kai DENG Su-hua ZHANG Chao-jie CHENG Song-li LV Shu-wen 《Journal of China University of Mining and Technology》 EI 2008年第4期494-499,共6页
The determination of gas pressure before uncovering coal in cross-cuts and in shafts is one of the important steps in pre- dicting coal and gas outbursts. However, the time spent for testing gas pressure is, at presen... The determination of gas pressure before uncovering coal in cross-cuts and in shafts is one of the important steps in pre- dicting coal and gas outbursts. However, the time spent for testing gas pressure is, at present, very long, seriously affecting the ap- plication of outburst prediction techniques in opening coal seams in cross-cuts and shafts. In order to reduce the time needed in gas pressure tests and to improve the accuracy of tests, we analyzed the process of gas pressure tests and examined the effect of the length of boreholes in coal seams in tests. The result shows that 1) the shorter the borehole, the easier the real pressure value of gas can be obtained and 2) the main factors affecting the time spent in gas pressure tests are the length of the borehole in coal seams, the gas emission time after the borehole has been formed and the quality of the borehole-sealing. The longer the length of the bore- hole, the longer the gas emission time and the larger the pressure-relief circle formed around the borehole, the longer the time needed for pressure tests. By controlling the length of the borehole in a test case in the Huainan mining area, and adopting a quick sealing technique using a sticky liquid method, the sealing quality was clearly improved and the gas emission time as well as the amount of gas discharged greatly decreased. Before the method described, the time required for the gas pressure to increase during the pressure test process, was more than 10 days. With our new method the required time is only 5 hours. In addition, the accuracy of the gas pressure test is greatly improved. 展开更多
关键词 gas pressure sticky liquid sealing quick test cross-cut SHAFT
下载PDF
Experimental research into the effect of gas pressure,particle size and nozzle area on initial gas-release energy during gas desorption 被引量:5
13
作者 Weitao Hou Hanpeng Wang +3 位作者 Liang Yuan Wei Wang Yang Xue Zhengwei Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期253-263,共11页
Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument... Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst. 展开更多
关键词 Coal and gas outburst Initial expansion energy of released gas gas pressure Particle size Nozzle area
下载PDF
Experimental study on the infrared precursor characteristics of gas-bearing coal failure under loading 被引量:4
14
作者 Shan Yin Zhonghui Li +4 位作者 Dazhao Song Xueqiu He Liming Qiu Quan Lou He Tian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期901-912,共12页
The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and ... The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and failure.In this paper,a self-developed stress-gas coupling failure infrared experimental system was used to analyse the infrared radiation temperature(IRT)and infrared thermal image precursor characteristics of gas-free coal and gas-bearing coal.The changes in the areas of the infrared temperature anomalous precursor regions and the effect of the gas on the infrared precursors were examined.The results show that high-temperature anomalous precursors arise mainly when the gas-free coal fails under loading,whereas the gas-bearing coal has high-temperature and low-temperature anomalous precursors.The area of the high-temperature anomalous precursor is approximately 30%–40%under gasbearing coal unstable failure,which is lower than the 60%–70%of the gas-free coal.The area of the low-temperature abnormal precursor is approximately 3%–6%,which is higher than the 1%–2%of the gas-free coal.With increasing gas pressure,the area of the high-temperature anomalous precursor gradually decreases,and the area of the low-temperature anomalous precursor gradually increases.The highand low-temperature anomalous precursors of gas-bearing coal are mainly caused by gas desorption,volume expansion,and thermal friction.The presence of gas inhibits the increase in IRT on the coal surface and increases the difficulty of infrared radiation(IR)monitoring and early warning for gas-bearing coal. 展开更多
关键词 gas–bearing coal gas pressure Infrared temperature Infrared thermal image Infrared precursory law
下载PDF
Microstructure evolution of Al_(0.6)CoCrFeNi high entropy alloy powder prepared by high pressure gas atomization 被引量:7
15
作者 Shang-cheng ZHOU Peng ZHANG +6 位作者 Yun-fei XUE Fu-chi WANG Lu WANG Tang-qing CAO Zhen TAN Bao-ynan CHENG Ben-peng WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期939-945,共7页
The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The ... The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×10^4 to 1.11×10^6 K/s. 展开更多
关键词 Al0.6CoCrFeNi high entropy alloy high pressure gas atomization spherical powder MICROSTRUCTURE cooling rate
下载PDF
Patterns and security technologies for co-extraction of coal and gas in deep mines without entry pillars 被引量:5
16
作者 Nong Zhang Fei Xue Nianchao Zhang Xiaowei Feng 《International Journal of Coal Science & Technology》 EI 2015年第1期66-75,共10页
Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep... Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep coal mines are hard to maintain, especially for constructing boreholes in confined spaces, owing to major deformations. Consequently, it is difficult to drill boreholes and maintain their stability, which therefore cannot guarantee the effectiveness of gas drainage. This paper presents three measures for conducting CECGWEP in deep mines on the basis of effective space in retained entryways for gas drainage, They are combinations of retaining roadways and face-lagging inclined boreholes, retaining roadways and face-advancing inclined boreholes, and retaining roadways and high return airway inclined boreholes. Several essential techniques are suggested to improve the maintenance of retained entryways and the stabilization of boreholes. For the particular cases considered in this study, two field trials have verified the latter two measures from the results obtained from the faces 1111(1) and 11112(1) in the Zhuji Mine. The results indicate that these models can effectively solve the problems in deep mines. The maximum gas drainage flow for a single hole can reach 8.1 m^3/min and the effective drainage distance can be extended up to 150 m or more. 展开更多
关键词 Retaining gob-side entryways Stability of borehole gas pressure relief Co-extraction of coal and gas without the entry pillar
下载PDF
Prediction of Flowing Bottomhole Pressures for Two-Phase Coalbed Methane Wells 被引量:5
17
作者 LIU Xinfu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1412-1420,共9页
A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were dev... A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa. 展开更多
关键词 coalbed methane productivity flowing bottomhole pressure gas column pressure two-phase fluid column pressure
下载PDF
Principle and engineering application of pressure relief gas drainage in low permeability outburst coal seam 被引量:15
18
作者 LIU lin CHENG Yuan-ping +2 位作者 WANG Hai-feng WANG Liang MA Xian-qin 《Mining Science and Technology》 EI CAS 2009年第3期342-345,351,共5页
With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration bo... With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration boreholes for draining of pressure relief gas.Based on the principle of overlying strata movement, deformation and pressure relief, a good effect of gas drainage was obtained.The practice in the Panyi coal mine has shown that, after mining the C11coal seam as the protective layer, the relative expansion deformation value of the protected layer C13 reached 2.63%, The permeability coefficient increased 2880 times, the gas drainage rate of the C13 coal seam increased to more than 60%, the amount of gas was reduced from 13.0 to 5.2 m3/t and the gas pressure declined from 4.4 to 0.4 MPa, which caused the danger the outbursts in the coal seams to be eliminated.The result was that we achieved a safe and highly efficient mining operation of the C13 coal seam. 展开更多
关键词 protective layer mining technology principle drainage of pressure relief gas engineering application
下载PDF
Effects of Gas Flow Field on Clogging Phenomenon in Close-Coupled Vortical Loop Slit Gas Atomization 被引量:3
19
作者 ZHANG Min ZHANG Zhaoming +2 位作者 ZHANG Yanqi LU Yuanjing LU Lin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期1003-1019,共17页
In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational flu... In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance. 展开更多
关键词 vortical loop slit atomizer annular slit width atomization gas pressure melt delivery tube protrusion length gas flow field numerical simulation
下载PDF
Research on forced gas draining from coal seams by surface well drilling 被引量:7
20
作者 Wu Dongmei Wang Haifeng +1 位作者 Ge Chungui An Fenghua 《Mining Science and Technology》 EI CAS 2011年第2期229-232,共4页
Surface drilling was performed at the Luling Coal Mine,in Huaibei,to shorten the period required for gas draining.The experimental study was designed to reduce the cost of gas control by efficiently draining gas from ... Surface drilling was performed at the Luling Coal Mine,in Huaibei,to shorten the period required for gas draining.The experimental study was designed to reduce the cost of gas control by efficiently draining gas from the upper protected layer.The structural arraignment and technical principles of pressure relief via surface drilling are discussed.Results from the trial showed that gas drained from the surface system over a period of 10 months.The total amount of collected gas was 248.4 million m^3.The gas draining occurred in three stages:a growth period;a period of maximum gas production;and an attenuation period.The period of maximum gas production lasted for 4 months.During this time the methane concentration ranged from 60%to 90%and the average draining rate was 10.6 m^3/min.Combined with other methods of draining it was possible to drain 70.6%of the gas from middle coal seam groups.The amount of residual gas dropped to 5.2 m^3/ton,and the pressure of the residual gas fell to 0.53 MPa, thereby eliminating the outburst danger in the middle coal seam groups.The factors affecting pressure relief gas draining by surface drilling were analysed. 展开更多
关键词 Surface drilling Pressure relief gas gas drainage Affecting factors
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部