期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Divalent nitrogen-rich cationic salts with great gas production capacities
1
作者 Hao Gu Cheng-chuang Li +3 位作者 Chang-hao Dai Dong-xu Chen Hong-wei Yang Guang-bin Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期54-68,共15页
Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction f... Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction from the readily available reactant.Their energetic salts with high nitrogen content were proved to be rare examples of divalent monocyclic/fused cyclic cationic salts according to the single crystal analyses.The structure of intermediate B was also identified and verified by its trivalent cation crystal 17.5H_2O indirectly.Energetic compounds 2-8 and 10-17 were fully characterized by NMR spectroscopy,infrared spectroscopy,differential scanning calorimetry,elemental analysis.These energetic salts exhibit good thermal stability with decomposition temperatures ranged from 182℃to 245℃.The sensitivity of compounds 2,6,10 and 14 is similar or superior to that of RDX while the others were much more insensitive to mechanical stimulate.Furthermore,detonation velocity of 10(8843 m/s)surpass that of RDX(D=8795 m/s).Considering the high gas production volume(≥808 L/kg)of 2,4,10and 12,constant-volume combustion experiments were conduct to evaluate their gas production capacities specifically.These compounds possess much higher maximum gas-production pressures(P_(max):7.88-10.08 MPa)than the commonly used reagent guanidine nitrate(GN:P_(max)=4.20 MPa),which indicate their strong gas production capacity. 展开更多
关键词 Fused cyclic compound TRIAZOLE Divalent cation gas production Energetic materials
下载PDF
Effects of Stylosanthes scabra Forage Supplementation on in Vitro Gas Production and Fiber Degradation of Eragrostis Grass Hay
2
作者 Thamsanqa Doctor Empire Mpanza Abubeker Hassen 《Agricultural Sciences》 CAS 2023年第4期522-540,共19页
Natural pastures constitute a major component of ruminant livestock feed, and are the most cost-effective feed resource available for smallholder subsistence farmers. However, this feed resource does not meet animal n... Natural pastures constitute a major component of ruminant livestock feed, and are the most cost-effective feed resource available for smallholder subsistence farmers. However, this feed resource does not meet animal nutritional requirement due to deficiency in nitrogen, energy and minerals. In addition, at maturity lignification is the major concern since it reduces digestibility and contributes to methane emission. Thus, the objective of this study was to evaluate the effect of supplementing low-quality Eragrostis grass hay with five (9281, 11,252, 11,255, 11,595 and 11,604) selected Stylosanthes scabra accessions on in vitro ruminal fermentation and neutral detergent fiber degradation. Therefore, in vitro study was conducted on grass hay, accessions and the mixture of grass hay with each accession included at two (15%, 30%) levels. The substrates (grass hay, accessions and the mixtures) were incubated in separate serum bottles for 72 h. Neutral detergent fiber (NDF) of the accessions ranged from 300 to 350 g/kg DM with crude protein (CP) value ranging from 177.5 to 184.1 g/kg DM. Eragrostis grass hay had NDF value of 813 g/kg DM, with CP value of 34.3 g/kg DM. Grass hay fermented slowly, it took 30 h for grass hay to produce gas volume above 50 mL, while Stylosanthes scabra accessions took 12 h. Supplementing grass hay with accessions significantly improved fermentation. However, it was observed that 15% inclusion took 30 h to produce gas volume above 50 mL, whereas at 30% inclusions it took 24 h for accession 9281, 11,595 and 11,604. Accession 11,604 improve grass fermentation by almost three times the value of grass hay in 2 h. Grass hay supplemented with accession 11,604 at 30% had a positive associative effect and significantly improved NDF degradability. In conclusion, accession 11,604 may be fed strategically as forage supplement to low-quality forage for ruminants. 展开更多
关键词 Low-Quality Forage In Vitro gas production Associative Effect Fiber Degradation
下载PDF
Effects of cellulase and xylanase enzymes mixed with increasing doses of Salix babylonica extract on in vitro rumen gas production kinetics of a mixture of corn silage with concentrate 被引量:4
3
作者 Abdelfattah Z M Salem German Buendía-Rodríguez +6 位作者 Mona M M Elghandour María A Mariezcurrena Berasain Francisco J Pea Jiménez Alberto B Pliego Juan C V Chagoyán María A Cerrillo Miguel A Rodríguez 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第1期131-139,共9页
An in vitro gas production (GP) technique was used to investigate the effects of combining different doses of Salix babylonica extract (SB) with exogenous fibrolytic enzymes (EZ) based on xylanase (X) and cell... An in vitro gas production (GP) technique was used to investigate the effects of combining different doses of Salix babylonica extract (SB) with exogenous fibrolytic enzymes (EZ) based on xylanase (X) and cellulase (C), or their mixture (XC; 1:1 v/v) on in vitro fermentation characteristics of a total mixed ration of corn silage and concentrate mixture (50:50, w/w) as substrate. Four levels of SB (0, 0.6, 1.2 and 1.8 mL g-1 dry matter (DM)) and four supplemental styles of EZ (1 μL g-1 DM; control (no enzymes), X, C and XC (1:1, v/v) were used in a 4×4 factorial arrangement. In vitro GP (mL g-1 DM) were recorded at 2, 4, 6, 8, 10, 12, 24, 36, 48 and 72 h of incubation. After 72 h, the incubation process was stopped and supernatant pH was determined, and then filtered to determine dry matter degradability (DMD). Fermentation parameters, such as the 24 h gas yield (GY24), in vitro organic matter digestibility (OMD), metabolizable energy (ME), short chain fatty acid concentrations (SCFA), and microbial crude protein production (MCP) were also estimated. Results indicated that there was a SBxEZ interaction (P〈0.0001) for the asymptotic gas production (b), the rate of gas production (c), GP from 6 to 72 h, GP2 (P=0.0095), and GP4 (P=0.02). The SB and different combination of enzymes supplementation influenced (P〈0.001) in vitro GP parameters after 12 h of incubation; the highest doses of SB (i.e., 1.8 mL g-1 DM), in the absence of any EZ, quadratically increased (P〈0.05) the initial delay before GP begins (L) and GP at different incubation times, with lowering b (quadratic effect, P〈0.0001 ) and c (quadratic effect, P〈0.0001 ; linear effect, P=0.0018). The GP was the lowest (P〈0.05) when the highest SB level was combined with cellulose. There were SBxEZ interactions (P〈0.001) for OMD, ME, the partitioning factor at 72 h of incubation (PF72), GY24, SCFA, MCP (P=0.0143), and pH (P=0.0008). The OMD, ME, GY24 and SCFA with supplementation of SB extract at 1.8 mL g-1 DM were higher (P〈0.001) than the other treatments, however,PF72 was lower (quadratic effect, P=0.0194) than the other levels. Both C and X had no effect (P〉0.05) on OMD, pH, ME, GY24, SCFA and MP. The combination of SB with EZ increased (P〈0.001) OMD, ME, SCFA, PFz2 and GP24, whereas there was no impact on pH. It could be concluded that addition of SB extract, C, and X effectively improved the in vitro rumen fermentation, and the combination of enzyme with SB extract at the level of 1.2 mL g-1 was more effective than the other treatments. 展开更多
关键词 CELLULASE DEGRADABILITY gas production Salix babylonica XYLANASE
下载PDF
In vitro Ruminal Gas Production Kinetics of Four Fodder Trees Ensiled With or Without Molasses and Urea 被引量:3
4
作者 Abdelfattah Z M Salem ZHOU Chuan-she +4 位作者 TAN Zhi-liang Miguel Mellado Moises Cipriano Salazar Mona M M Y Elghandopur Nicholas E Odongo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第7期1234-1242,共9页
This study investigated if the addition of urea (U), molasses (M) or their 1:1 (v/v) mixture during ensiling increases the nutritional value of forage from four fodder trees (Prunus persica, Leucaena esculenta... This study investigated if the addition of urea (U), molasses (M) or their 1:1 (v/v) mixture during ensiling increases the nutritional value of forage from four fodder trees (Prunus persica, Leucaena esculenta, Acacia farnesiana, and Prunus domestica). Forage samples of fodder trees were collected in triplicate (three individual samples of each species) and subjected to an in vitro gas production (GP) procedure. Fermentation at 24 h (GP 24), short-chain volatile fatty acids (SCFA), and microbial crude protein production (MCP), in vitro organic matter digestibility (OMD), metabolizable energy (ME) and dry matter degradability (DMD) were estimated. Forage samples were incubated for 72 h in an incubator at 39oC and the volume of GP was recorded at 2, 4, 6, 8, 10, 12, 24, 48, and 72 h of incubation using the reading pressure technique. The rumen fermentation profiles were highest for P. persica, which showed the highest (P〈0.0001) DMD, ME, OMD, SCFA, GP 24 and MCP. On the other hand L. esculenta had the lowest (P〈0.0001) DMD, SCFA, MCP; P. domestica had the lowest (P〈0.0001) OMD. The addition of M to silage increased (P〈0.0001) ME and OMD, as well as GP. However, the addition of U and the mixture of U and M reduced (P〈0.0001) DMD, ME, OMD, SCFA, GY 24 and MCP. These results show that P. persica has the highest nutritive value and L. esculenta the lowest for ruminants. Additionally, the addition of M to forage from fodder trees increases rumen GP and fermentation, which may improve nutrient utilization in ruminants. 展开更多
关键词 fodder trees UREA MOLASSES gas production
下载PDF
Effect of lactic acid bacteria inoculants on alfalfa(Medicago sativa L.) silage quality:assessment of degradation(in situ) and gas production(in vitro) 被引量:3
5
作者 LIU Ce LAI Yu-jiao +2 位作者 LU Xiao-nan GUO Ping-ting LUO Hai-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2834-2841,共8页
Alfalfa (Medicago sativa) is difficult to ensile successfully because of the low content of moisture and water-soluble carbohydrates (WSC) in fresh alfalfa and the high buffering capacity in fresh alfalfa. Here, w... Alfalfa (Medicago sativa) is difficult to ensile successfully because of the low content of moisture and water-soluble carbohydrates (WSC) in fresh alfalfa and the high buffering capacity in fresh alfalfa. Here, we conducted a study to evaluate the effects of three lactic acid bacteria (LAB) inoculants (Lactobacillus case/, lactobacillus plantarum, and Pediococcus pentosaceus) on silage quality, in sitE/ruminal degradability, and in vitro fermentation of alfalfa silage. The first cut of alfalfa was wilted, chopped, and randomly divided into four groups: the control (CON) and control mixed with three separate LAB inoculants (106 cfu g-1). Simmental steers with a body weight of (452±18) kg and with installed rumen fistulas were prepared for in situ degradation and for in vitro gas production. LAB inoculants had a lower (P〈0.05) content of butyric acid than the CON group. Among them, the L. casei inoculated silage had a higher (P〈0.05) content of water-soluble carbohydrate (WSC) and a lower (P〈0.05) NH3-H content. The effective degradation (ED) of crude protein in LAB inoculation decreased (P〈0.05), while the ED of acid detergent fiber increased (P〈0.05) in situ fermentation. The alfalfa silage with LAB inoculants produced more carbon dioxide (P〈0.05). The NH3-H content of mixed incubation fluid in L. casei inoculated silage was lower (P〈0.05) compared with other groups. Therefore, this study showed that LAB inoculants could improve both ensiling quality and degradation. In particular, the L. casei inoculations exhibited better performance by limiting proteolysis during ensiling. 展开更多
关键词 alfalfa silage LAB inoculants nylon-bag degradation gas production fermentation
下载PDF
Numerical studies of hydrate dissociation and gas production behavior in porous media during depressurization process 被引量:3
6
作者 Xuke Ruan Mingjun Yang +2 位作者 Yongchen Song Haifeng Liang Yanghui Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第4期381-392,共12页
In this study, a numerical model is developed to investigate the hydrate dissociation and gas production in porous media by depressurization. A series of simulation runs are conducted to study the impacts of permeabil... In this study, a numerical model is developed to investigate the hydrate dissociation and gas production in porous media by depressurization. A series of simulation runs are conducted to study the impacts of permeability characteristics, including permeability reduction exponent, absolute permeability, hydrate accumulation habits and hydrate saturation, sand average grain size and irreducible water saturation. The effects of the distribution of hydrate in porous media are examined by adapting conceptual models of hydrate accumulation habits into simulations to govern the evolution of permeability with hydrate decomposition, which is also compared with the conventional reservoir permeability model, i.e. Corey model. The simulations show that the hydrate dissociation rate increases with the decrease of permeability reduction exponent, hydrate saturation and the sand average grain size. Compared with the conceptual models of hydrate accumulation habits, our simulations indicate that Corey model overpredicts the gas production and the performance of hydrate coating models is superior to that of hydrate filling models in gas production, which behavior does follow by the order of capillary coating〉pore coating〉pore filling〉capillary filling. From the analysis of tl/2, some interesting results are suggested as follows: (1) there is a "switch" value (the "switch" absolute permeability) for laboratory-scale hydrate dissociation in porous media, the absolute permeability has almost no influence on the gas production behavior when the permeability exceeds the "switch" value. In this study, the "switch" value of absolute permeability can be estimated to be between 10 and 50 md. (2) An optimum value of initial effective water saturation Sw,e exists where hydrate dissociation rate reaches the maximum and the optimum value largely coincides with the value of irreducible water saturation Swr,e. For the case of Sw,e〈,Swr,e, or Sw,e〉Swr,e, there are different control mechanisms dominating the process of hydrate dissociation and gas production. 展开更多
关键词 gas hydrate numerical simulation PERMEABILITY DISSOCIATION gas production DEPRESSURIZATION
下载PDF
Progress and prospects of oil and gas production engineering technology in China 被引量:2
7
作者 ZHENG Xinquan SHI Junfeng +4 位作者 CAO Gang YANG Nengyu CUI Mingyue JIA Deli LIU He 《Petroleum Exploration and Development》 CSCD 2022年第3期644-659,共16页
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p... This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry. 展开更多
关键词 oil and gas production engineering separated-layer injection artificial lift reservoir stimulation gas well de-watering WORKOVER digital transformation low carbon economy
下载PDF
Forecasting of China's natural gas production and its policy implications 被引量:3
8
作者 Shi-Qun Li Bao-Sheng Zhang Xu Tang 《Petroleum Science》 SCIE CAS CSCD 2016年第3期592-603,共12页
With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important... With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry. 展开更多
关键词 Natural gas production forecast Generalized Weng model Energy structure Policy implication
下载PDF
China's Natural Gas Production from 2008 to 2013(100 million cubic meters) 被引量:1
9
作者 Xiao Lu 《China Oil & Gas》 CAS 2014年第2期39-39,共1页
关键词 CNPC China’s Natural gas production from 2008 to 2013 million cubic meters DATA
下载PDF
Design and optimization of electrochemical cell potential for hydrogen gas production
10
作者 Nawar KAl-Shara Farooq Sher +2 位作者 Sania ZIqbal Oliver Curnick George ZChen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期421-427,I0013,共8页
This study deals with the optimization of best working conditions in molten melt for the production of hydrogen(H2) gas.Limited research has been carried out on how electrochemical process occurs through steam splitti... This study deals with the optimization of best working conditions in molten melt for the production of hydrogen(H2) gas.Limited research has been carried out on how electrochemical process occurs through steam splitting via molten hydroxide.54 combinations of cathode,anode,temperature and voltage have been investigated for the optimization of best working conditions with molten hydroxide for hydrogen gas production.All these electrochemical investigations were carried out at 225 to 300℃ temperature and 1.5 to 2.5 V applied voltage values.The current efficiency of 90.5,80.0 and 68.6% has been achieved using stainless steel anodic cell with nickel,stainless steel and platinum working cathode respectively.For nickel cathode,an increase in the current directly affected the hydrogen gas flow rate at cathode.It can be hypothesized from the noted results that increase in current is directly proportional to operating temperature and applied voltage.Higher values were noted when the applied voltages increased from 1.5 to 2.5 V at 300℃,the flow rate of hydrogen gas increased from 1.5 to 11.3 cm^(3) min^(-1),1.0 to 13 cm^(3) min^(-1) in case of electrolysis@stainless steel and@graphite anode respectively.It is observed that the current efficiency of stainless steel anodic cell was higher than the graphite anodic cell.Therefore,steam splitting with the help of molten salts has shown an encouraging alternate to current methodology for H2 fuel production. 展开更多
关键词 Sustainable energy Splitting steam ELECTROLYSIS Hydrogen gas production Electrochemical cell and Variable cathodes
下载PDF
Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
11
作者 王奕淳 吴寒 +3 位作者 陆文康 李萌 陶凌 马修泉 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期17-22,共6页
The process of ionizing normal saline induced by femtosecond laser is studied from the perspective of gas production rate and composition.When the repetition rate is less than 1000 Hz,each laser pulse independently ge... The process of ionizing normal saline induced by femtosecond laser is studied from the perspective of gas production rate and composition.When the repetition rate is less than 1000 Hz,each laser pulse independently generates ionization gas.At the same time,we discovered the inhibitory effect of meglumini diatrizoici on the ionization process and explained the reasons for this inhibition.Finally,the gas composition proved that the primary gas production mechanism of the femtosecond laser is the decomposition of water molecular,and the composition of the solution after the reaction proved the decomposition effect of the laser on meglumine. 展开更多
关键词 femtosecond laser IONIZATION gas production rate meglumini diatrizoici
下载PDF
China’s Natural Gas Production from 2005 to 2010 (100 million cubic meter)
12
作者 Zhao Hui and Xiao Lu 《China Oil & Gas》 CAS 2011年第2期56-56,共1页
关键词 s Natural gas production from 2005 to 2010 CNPC China million cubic meter
下载PDF
First Quarter Oil/Gas Production Gratifying
13
《China Oil & Gas》 CAS 2000年第2期28-,15,共2页
关键词 CNPC First Quarter Oil/gas production Gratifying OVER
下载PDF
PetroChina Natural Gas Production in 1^(st) Half of 2001
14
《China Oil & Gas》 CAS 2001年第3期30-31,共2页
关键词 Half of 2001 PetroChina Natural gas production in 1 st
下载PDF
Statistics of China's Natural Gas Production from 2001 to 2006(100 million cubic meters)
15
《China Oil & Gas》 CAS 2007年第1期57-57,共1页
关键词 CNPC Statistics of China’s Natural gas production from 2001 to 2006 million cubic meters STAR
下载PDF
China's Natural Gas Production from 2012 to 2017(100 million cubic meters)
16
作者 《China Oil & Gas》 CAS 2018年第3期62-62,共1页
关键词 million cubic meters CBM China’s Natural gas production from 2012 to 2017
下载PDF
China's Natural Gas Production from 2007 to 2012 (100 million cubic meters)
17
《China Oil & Gas》 CAS 2013年第2期49-49,共1页
关键词 million cubic meters CNPC China’s Natural gas production from 2007 to 2012
下载PDF
China's Natural Gas Production from 2006 to 2011 (100 million cubic meters)
18
作者 Xiao Lu 《China Oil & Gas》 CAS 2012年第2期53-53,共1页
关键词 110 China’s Natural gas production from 2006 to 2011 million cubic meters
下载PDF
Statistics of China's Natural Gas Production from 2000 to 2005(100 million cubic meters)
19
《China Oil & Gas》 CAS 2006年第1期37-37,共1页
关键词 STAR Statistics of China’s Natural gas production from 2000 to 2005 million cubic meters
下载PDF
Statistics of China's Natural Gas Production from 2002 to 2007(100 million cubic meters)
20
《China Oil & Gas》 CAS 2008年第1期55-55,共1页
关键词 CNPC Statistics of China’s Natural gas production from 2002 to 2007 million cubic meters
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部