期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
Atomic layer deposition to heterostructures for application in gas sensors 被引量:1
1
作者 Hongyin Pan Lihao Zhou +3 位作者 Wei Zheng Xianghong Liu Jun Zhang Nicola Pinna 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期171-188,共18页
Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semicondu... Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semiconductor(MOS) heterostructures for gas sensing applications in which at least one of the preparation steps is carried out by ALD. In particular, three types of MOS-based heterostructures synthesized by ALD are discussed, including ALD of metal catalysts on MOS, ALD of metal oxides on MOS and MOS core–shell(C–S) heterostructures.The gas sensing performances of these heterostructures are carefully analyzed and discussed.Finally, the further developments required and the challenges faced by ALD for the synthesis of MOS gas sensing materials are discussed. 展开更多
关键词 atomic layer deposition metal oxides HETEROSTRUCTURES gas sensors
下载PDF
Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors:Overview
2
作者 Li‑Yuan Zhu Lang‑Xi Ou +3 位作者 Li‑Wen Mao Xue‑Yan Wu Yi‑Ping Liu Hong‑Liang Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期353-427,共75页
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analys... Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analysis.Among various chemiresistive sensing materials,noble metal-decorated semiconducting metal oxides(SMOs)have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals.This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures(e.g.,nanoparticles,nanowires,nanorods,nanosheets,nanoflowers,and microspheres)for high-performance gas sensors with higher response,faster response/recovery speed,lower operating temperature,and ultra-low detection limits.The key topics include Pt,Pd,Au,other noble metals(e.g.,Ag,Ru,and Rh.),and bimetals-decorated SMOs containing ZnO,SnO_(2),WO_(3),other SMOs(e.g.,In_(2)O_(3),Fe_(2)O_(3),and CuO),and heterostructured SMOs.In addition to conventional devices,the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed.Moreover,the relevant mechanisms for the sensing performance improvement caused by noble metal decoration,including the electronic sensitization effect and the chemical sensitization effect,have also been summarized in detail.Finally,major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed. 展开更多
关键词 Noble metal BIMETAL Semiconducting metal oxide Chemiresistive gas sensor Electronic sensitization Chemical sensitization
下载PDF
Hydrogen and Ozone SAW Based Gas Sensors with RF Magnetron Sputtered InO_x and Electron Beam Evaporated SiN_y 被引量:1
3
作者 A.C.Fechete A.Wisitsora-at +3 位作者 W.Wlodarskil K.Kalantar-zadeh S.Kandasamy A.S.Holland 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期206-209,共4页
Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The s... Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The sensor consists of a 1μm thick silicon nitride (SiN_y) intermediate layer deposited by electron beam evaporation on a 36°Y-cut X-propagating piezoelectric lithium tantalate (LiTaO_3) substrate and a 100 nm thin indium oxide (InO_x) sensing layer deposited by R.F.magnetron sputtering.The device fabrication is described and the performance of the sensor is analyzed in terms of response magnitude as a function of operating temperature.Large frequency shifts of 360 kHz for 600μg/g of H_2 and 92 kHz for 40 ng/g O_3 were recorded.In addition,the surface morphology of the deposited films were investigated by Atomic Force Microscopy (AFM) and the chemical composition by X-Ray Photoelectron Spectroscopy (XPS) to correlate gas-sensing behavior to structural characteristics of the thin film. 展开更多
关键词 SAW gas sensors E-beam evaporated SiN_y InO_x O3 H2
下载PDF
Roles of Chemical Gas Sensors in the Filed of Safety 被引量:1
4
作者 Shigemori Tesshi 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期3-6,共4页
1 Introduction Gas sensors have been used in a range of applications where they play a crucial role in ensuring that we live safely and comfortablely.Gas safety products,such as gas detectors/alarms,especially those e... 1 Introduction Gas sensors have been used in a range of applications where they play a crucial role in ensuring that we live safely and comfortablely.Gas safety products,such as gas detectors/alarms,especially those equipped with combustible gas,toxic gas,or oxygen sensors,are one of the most important applications for gas sensors.The purpose of gas detector/alarm units is 展开更多
关键词 Roles of Chemical gas sensors in the Filed of Safety
下载PDF
Metal Oxide Nanocrystals Multi-Parametric Gas Sensors
5
作者 E.Comini C.Baratto +2 位作者 M.Ferroni G.Faglia G.Sberveglieri 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期17-20,共4页
Interest in nanowires of semiconducting oxides is exponentially grown in the last years,due to their attracting potential applications in electronic,optical and sensor field.We have focused our attention on the sensin... Interest in nanowires of semiconducting oxides is exponentially grown in the last years,due to their attracting potential applications in electronic,optical and sensor field.We have focused our attention on the sensing properties of indium and zinc oxide nanostructures.We have studied the influence of the deposition conditions on the nanostructures morphology and sensing properties.We report on the growth of ZnO and In_2O_3 nanostructures on silicon and alumina substrates,using vapour phase technique.We have synthesized,depending on the growth conditions,different structures such as nano-wires, tetrapod,nano-comb,nano-necklace,nano-pencil ZnO/In_2O_3 without using any metal catalyst. 展开更多
关键词 indium oxide zin oxide gas sensors PHOTOLUMINESCENCE NANOWIRES
下载PDF
Room-Temperature Gas Sensors Under Photoactivation:From Metal Oxides to 2D Materials 被引量:6
6
作者 Rahul Kumar Xianghong Liu +1 位作者 Jun Zhang Mahesh Kumar 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期292-328,共37页
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applicatio... Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. 展开更多
关键词 gas sensor Room temperature PHOTOACTIVATION Metal oxide 2D materials
下载PDF
Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor 被引量:3
7
作者 Lang-Xi Ou Meng-Yang Liu +2 位作者 Li-Yuan Zhu David Wei Zhang Hong-Liang Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期310-351,共42页
With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been... With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors.However,it is limited by high operating temperature.The current research works are directed towards fabricating high-performance flexible room-temperature(FRT)gas sensors,which are effective in simplifying the structure of MOS-based sensors,reducing power consumption,and expanding the application of portable devices.This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism,performance,flexibility characteristics,and applications.This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors,including pristine MOS,noble metal nanoparticles modified MOS,organic polymers modified MOS,carbon-based materials(carbon nanotubes and graphene derivatives)modified MOS,and two-dimensional transition metal dichalcogenides materials modified MOS.The effect of light-illuminated to improve gas sensing performance is further discussed.Furthermore,the applications and future perspectives of FRT gas sensors are also discussed. 展开更多
关键词 Metal oxide semiconductor Flexible gas sensor Room temperature NANOMATERIALS
下载PDF
The light-enhanced NO_2 sensing properties of porous silicon gas sensors at room temperature 被引量:2
8
作者 陈慧卿 胡明 +1 位作者 曾晶 王巍丹 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期657-661,共5页
The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a... The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity. 展开更多
关键词 gas sensor ultraviolet radiation porous silicon POROSITY
下载PDF
Gas sensors based on TiO_(2) nanostructured materials for the detection of hazardous gases: A review 被引量:2
9
作者 Xu Tian Xiuxiu Cui +6 位作者 Tingrun Lai Jie Ren Zhichao Yang Mingjing Xiao Bingsen Wang Xuechun Xiao Yude Wang 《Nano Materials Science》 CAS CSCD 2021年第4期390-403,共14页
Hazardous gases have been strongly associated with being a detriment to human life within the environment The development of a reliable gas sensor with high response and selectivity is of great signifcance for detecti... Hazardous gases have been strongly associated with being a detriment to human life within the environment The development of a reliable gas sensor with high response and selectivity is of great signifcance for detecting different hazardous gases.TiO_(2) nanomaterials are promising candidates with great potential and excellent per-formance in gas sensor applications,such as hydrogen,acetone,ammonia,and ethanol detection.This review begins with a detailed discussion of the di ferent dimensional morphologies of TiO_(2),whitch affect the gas sensing performance of TiO_(2) sensors.The diverse morphologies of TiO_(2) can easily be tuned by regulating the manufacturing conditions.Meanwhile,they exhibit unique characteristics for detecting gases,including large specific suface area,superior elecron tr ansport rates,extraordinary pemmeability,and active reaction sites,which offer new opportunities to improve the gas sensing properties.In addition,a variety of efforts have been made to functional TiO_(2) nanomaterials to further enhance sensing properties,including TiO_(2)-based composites and light-assisted gas sensors.The enhanced gas sensing mechanisms of multi-component composite nano-materials based on TiO_(2) include loaded noble metals,doped elements,constructed heterojunctions,and com-pounded with other functional materials.Finally,several studies have been summarized to demonstate the compar ative sensing properties of TiO_(2)-based gas sensors. 展开更多
关键词 gas sensor TiO_(2)nanomaterials TiO_(2)-Based composites gas sensing mechanisn
下载PDF
Study on Temperature Modulation Techniques for Micro Gas Sensors 被引量:1
10
作者 Guangfen Wei Zhenan Tang +2 位作者 Hongquan Zhang Yanbing Xue Jun Yu 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期349-352,共4页
The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the ... The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the selectivity of gas sensors.With a newly developed alumina based micro gas sensor,the sensitivity to CO and CH_4 at different operating temperatures was investigated.By modulating the temperature of the sensor at pulse and sine wave modes with different frequencies and amplitudes,the dynamic responses of the sensor were measured and processed.Results show that the modulating waveshape plays an important role in the improvement of selectivity,while the influence of frequency is small at the suitable sampling frequency in the range of 25 mHz~200 mHz. 展开更多
关键词 micro gas sensor SELECTIVITY temperature modulation techniques
下载PDF
Improvement of the Sensitivity of ZnGa_2O_4 Gas Sensors by Electron Beam Irradiation
11
作者 Zhen Li Minghong Wu Zheng Jiao Haijian Zhong Jinhua Wang 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期143-145,共3页
In the present paper,the electron beam irradiation was used to improve gas sensing properties of ZnGa_2O_4 gas sensors.The effects of electron beam irradiation on the performance of ZnGa_2O_4 gas sensors were reported... In the present paper,the electron beam irradiation was used to improve gas sensing properties of ZnGa_2O_4 gas sensors.The effects of electron beam irradiation on the performance of ZnGa_2O_4 gas sensors were reported.Results show that the sensitivity of ZnGa_2O_4 gas sensors to various gases increased after electron beam irradiation,and the optimal working temperature decreased.The effect of irradiation dose and the reaction mechanism were discussed. 展开更多
关键词 electron beam IRRADIATION ZnGa2O4 gas sensor
下载PDF
Design of Gas Sensors Circuits with in-System Programmable Ddevices
12
作者 Duren Liu Jin Liu Zhichun Ren 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期146-147,共2页
In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two pract... In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two practical circuits designed with programmable devices and its design method.By introducing programmable devices into gas sensor circuits,we can further improve system reliability,stability,sensitivity and integration degree,and enhance flexibility of system design. 展开更多
关键词 in-system programmable device gas sensor music warning circuit gas sensor measurement circuit
下载PDF
SnO_(2)nanostructured materials used as gas sensors for the detection of hazardous and flammable gases:A review
13
作者 Yulin Kong Yuxiu Li +6 位作者 Xiuxiu Cui Linfeng Su Dian Ma Tingrun Lai Lijia Yao Xuechun Xiao Yude Wang 《Nano Materials Science》 EI CAS CSCD 2022年第4期339-350,共12页
SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of t... SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of the traditional SnO_(2)gas sensor is limited due to its higher work-temperature,low gas response,and poor selectivity.Nanomaterials can significantly impact gas-sensitive properties due to the quantum size,surface,and small size effects of nanomaterials.By applying nanotechnology to the preparation of SnO_(2),the SnO_(2)nanomaterial-based sensors could show better performance,which greatly expands the application of SnO_(2)gas sensors.In this review,the preparation method of the SnO_(2)nanostructure,the types of gas detected,and the improvements of SnO_(2)gas-sensing performances via elemental modification are introduced as well as the future development of SnO_(2)is discussed. 展开更多
关键词 SnO_(2)nanostructured materials gas sensor Preparation methods gas-sensing performances
下载PDF
Two-dimensional transition metal MXene-based gas sensors:A review
14
作者 Junfeng Li Xiaojie Chen +3 位作者 Xiaojie Zhu Yingchang Jiang Xueting Chang Shibin Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期208-221,共14页
As an emerging star in the family of two-dimensional(2D)materials,2D transition metal carbides,carbonitrides and nitrides,collectively referred to as MXenes,have large specific surface area,rich active sites,metallic ... As an emerging star in the family of two-dimensional(2D)materials,2D transition metal carbides,carbonitrides and nitrides,collectively referred to as MXenes,have large specific surface area,rich active sites,metallic conductivity and adjustable surface chemical properties.These features make MXenes promising candidates for gas-sensing materials.For the past few years,MXene-based sensors have drawn increasing attention due to their enhanced sensor performance.Based on this,this review systematically represents the structure,synthesis methods and properties of MXenes,and summarizes their applications in gas sensors.Firstly,the types,structure,main synthesis methods and properties of MXenes are introduced in a comprehensive way.Next,the corresponding design principle and working mechanism of MXene-based gas sensor are clarified.Subsequently,the sensing performances of pristine MXenes and the MXene-based nanocomposite are discussed.Finally,some future opportunities and challenges of MXene-based sensors are pointed out. 展开更多
关键词 MXene gas sensors SYNTHESIS STABILITY gas-sensing mechanism gas-sensing performance
原文传递
Diversiform gas sensors based on two-dimensional nanomaterials
15
作者 Dongzhi Zhang Wenjing Pan +5 位作者 Mingcong Tang Dongyue Wang Sujing Yu Qian Mi Qiannan Pan andYaqing Hu 《Nano Research》 SCIE EI CSCD 2023年第10期11959-11991,共33页
Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis m... Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials,such as noble metal nanoparticles(NPs),metal oxides(MOS),conductive polymers,other new 2D materials.The methods of doping,modification,and photoexcitation can effectively improve the gas-sensing properties of 2D materials.The sensitive mechanisms of heterojunction,Schottky junction,and photoexcitation in 2D material sensors are discussed in detail.This paper discusses the application prospects of 2D materials in wearable gas sensors,food safety,and self-powered sensing,and provides ideas for further applications in environmental quality monitoring and disease diagnosis.In addition,the opportunities and challenges for gas sensors based on 2D materials are also discussed. 展开更多
关键词 gas sensor two-dimensional materials synthesis methods doping and modification light excitation enhanced sensitization mechanism
原文传递
Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors
16
作者 Yibing Luo Jianye Li +3 位作者 Qiongling Ding Hao Wang Chuan Liu Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期103-147,共45页
Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to ... Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed. 展开更多
关键词 Health and safety monitoring gas and humidity sensor Functionalized hydrogel Wearable sensor Flexible and stretchable sensor
下载PDF
β-Ga_(2)O_(3) nanowires and thin films for metal oxide semiconductor gas sensors:Sensing mechanisms and performance enhancement strategies 被引量:4
17
作者 Adeel Afzal 《Journal of Materiomics》 SCIE EI 2019年第4期542-557,共16页
The reliable,selective,and fast detection of the inorganic and organic gases in indoor and outdoor air and industrial processes is a huge challenge for environmental sustainability,healthier life,and disease control a... The reliable,selective,and fast detection of the inorganic and organic gases in indoor and outdoor air and industrial processes is a huge challenge for environmental sustainability,healthier life,and disease control and diagnosis.Metal oxides have been frequently explored as highly sensitive receptor elements in the electronic gas sensors since the 1960s.Gallium oxide(Ga_(2)O_(3)),often recognized as one of the widest-bandgap semiconductors,has shown tremendous potential as the inorganic gas receptor because of its extraordinary chemical and thermal stability,and excellent electronic properties.This article presents a comprehensive reference on the electrical properties,historical developments,detection mechanisms,and gas sensing performance of Ga_(2)O_(3) nanowires and composite nanostructures.In particular,the relationships between composition,nanostructure,and gas sensing properties of galliumcontaining oxidic nanomaterials such as β-Ga_(2)O_(3) nanowires,surface-modified Ga_(2)O_(3),metal-doped Ga_(2)O_(3) or Ga-doped metal oxides,and Ga_(2)O_(3)/metal oxide composite heterostructures are studied.The applications of Ga_(2)O_(3) gas sensors are discussed with an emphasis on their practical limitations such as high-temperature operation,power consumption,and miniaturization issues.Finally,future research directions and potential developments are suggested. 展开更多
关键词 β-Ga_(2)O_(3)nanowires gas sensors NANOMATERIALS SEMICONDUCTORS Sensing mechanisms Thin films
原文传递
Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures 被引量:3
18
作者 Thomas Allsop Raz Arif +5 位作者 Ron Neal Kyriacos Kalli Vojtěch Kundrát Aleksey Rozhin Phil Culverhouse David J Webb 《Light(Science & Applications)》 SCIE EI CAS CSCD 2016年第1期624-631,共8页
Weinvestigate the modification of the optical properties of carbon nanotubes(CNTs)resulting from a chemical reaction triggered by the presence of a specific compound(gaseous carbon dioxide(CO_(2)))and show this mechan... Weinvestigate the modification of the optical properties of carbon nanotubes(CNTs)resulting from a chemical reaction triggered by the presence of a specific compound(gaseous carbon dioxide(CO_(2)))and show this mechanism has important consequences for chemical sensing.CNTs have attracted significant research interest because they can be functionalized for a particular chemical,yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing.So far,however,utilizing their optical properties for this purpose has proven to be challenging.We demonstrate the use of localized surface plasmons generated on a nanostructured thin film,resembling a large array of nano-wires,to detect changes in the optical properties of the CNTs.Chemical selectivity is demonstrated using CO_(2) in gaseous form at room temperature.The demonstrated methodology results additionally in a new,electrically passive,optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments. 展开更多
关键词 carbon nanotubes gas sensors localized surface plasmons optical sensing
原文传递
ZnO Nanoparticles as Ethanol Gas Sensors and the Effective Parameters on Their Performance 被引量:1
19
作者 Asieh Sadat Kazemi Reza Afzalzadeh Mohamadreza Abadyan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第5期393-400,共8页
ZnO nanoparticles are synthesized and applied as ethanol gas sensors. In some cases, the sensitivity and response time of these particles are shown to be higher than that has been reported in the literature. It has be... ZnO nanoparticles are synthesized and applied as ethanol gas sensors. In some cases, the sensitivity and response time of these particles are shown to be higher than that has been reported in the literature. It has been investigated that the most possible reason for this higher gas sensing performance can be attributed to the quantity of the activity coefficient of its initial components. However, other effects such as pH and thermal decomposition are of importance as well. Specific ion interaction (SIT) model is applied to derive the mean activity coefficient values of the additives used in synthesis of ZnO nanoparticles. 展开更多
关键词 ZnO nanoparticles gas sensors Activity coefficient PH Thermal decomposition
原文传递
Strategies and challenges for enhancing performance of MXene-based gas sensors:a review 被引量:1
20
作者 Hai-Feng Zhang Jing-Yue Xuan +5 位作者 Qi Zhang Mei-Ling Sun Fu-Chao Jia Xiao-Mei Wang Guang-Chao Yin Si-Yu Lu 《Rare Metals》 SCIE EI CAS CSCD 2022年第12期3976-3999,共24页
With the advantages of metal conductivity,large specific surface area,and rich surface functional groups,two-dimensional(2D)MXenes have shown great potential in the field of gas sensing.However,gas sensors fabricated ... With the advantages of metal conductivity,large specific surface area,and rich surface functional groups,two-dimensional(2D)MXenes have shown great potential in the field of gas sensing.However,gas sensors fabricated with pristine MXenes generally suffer from several problems such as low sensitivity,poor selectivity,significant baseresistance drift,and poor environment stability.Therefore,many efforts have been devoted to overcoming these problems.In this review,we review the progress on MXenebased gas sensors and summarize several efficient strategies(including structural design,surface modification,inorganic Schottky j unction/heterojunction sensitization,polymer addition,and metal-ion intercalation)to promote the gassensing performance.In addition,the major challenges and future development directions of MXene-based gas sensors are also outlined in the present review. 展开更多
关键词 MXenes gas sensors STRATEGIES gas-sensing performance
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部