期刊文献+
共找到312,321篇文章
< 1 2 250 >
每页显示 20 50 100
Estimated Ultimate Recovery and Productivity of Deep Shale Gas Horizontal Wells
1
作者 Haijie Zhang Haifeng Zhao +6 位作者 Ming Jiang Junwei Pu Yuanping Luo Weiming Chen Tongtong Luo Zhiqiang Li Xinan Yu 《Fluid Dynamics & Materials Processing》 2025年第1期221-232,共12页
Pressure control in deep shale gas horizontal wells can reduce the stress sensitivity of hydraulic fractures and improve the estimated ultimate recovery(EUR).In this study,a hydraulic fracture stress sensitivity model... Pressure control in deep shale gas horizontal wells can reduce the stress sensitivity of hydraulic fractures and improve the estimated ultimate recovery(EUR).In this study,a hydraulic fracture stress sensitivity model is proposed to characterize the effect of pressure drop rate on fracture permeability.Furthermore,a production prediction model is introduced accounting for a non-uniform hydraulic fracture conductivity distribution.The results reveal that increasing the fracture conductivity leads to a rapid daily production increase in the early stages.However,above 0.50 D·cm,a further increase in the fracture conductivity has a limited effect on shale gas production growth.The initial production is lower under pressure-controlled conditions than that under pressure-release.For extended pressure control durations,the cumulative production initially increases and then decreases.For a fracture conductivity of 0.10 D·cm,the increase in production output under controlled-pressure conditions is~35%.For representative deep shale gas wells(Southern Sichuan,China),if the pressure drop rate under controlled-pressure conditions is reduced from 0.19 to 0.04 MPa/d,the EUR increase for 5 years of pressure-controlled production is 41.0 million,with an increase percentage of~29%. 展开更多
关键词 Deep shale gas fracture stress sensitivity pressure-controlled production production prediction
下载PDF
Optimization of production well patterns for natural gas hydrate reservoir: Referring to the results from production tests and numerical simulations
2
作者 Lang-feng Mu Hao-tian Liu +2 位作者 Chi Zhang Yi Zhang Hai-long Lu 《China Geology》 2025年第1期39-57,共19页
Natural gas hydrate is a clean energy source with substantial resource potential.In contrast to conventional oil and gas,natural gas hydrate exists as a multi-phase system consisting of solids,liquids,and gases,which ... Natural gas hydrate is a clean energy source with substantial resource potential.In contrast to conventional oil and gas,natural gas hydrate exists as a multi-phase system consisting of solids,liquids,and gases,which presents unique challenges and complicates the mechanisms of seepage and exploitation.Both domestic and international natural gas hydrate production tests typically employ a single-well production model.Although this approach has seen some success,it continues to be hindered by low production rates and short production cycles.Therefore,there is an urgent need to explore a new well network to significantly increase the production of a single well.This paper provides a comprehensive review of the latest advancements in natural gas hydrate research,including both laboratory studies and field tests.It further examines the gas production processes and development outcomes for single wells,dual wells,multi-branch wells,and multi-well systems under conditions of depressurization,thermal injection,and CO_(2) replacement.On this basis,well types and well networks suitable for commercial exploitation of natural gas hydrate were explored,and the technical direction of natural gas hydrate development was proposed.The study shows that fully exploiting the flexibility of complex structural wells and designing a well network compatible with the reservoir is the key to improving production from a single well.Moreover,multi-well joint exploitation is identified as an effective strategy for achieving large-scale,efficient development of natural gas hydrate. 展开更多
关键词 gas Hydrate Production DEPRESSURIZATION Heat Injection REPLACEMENT Multi-Branch well well patterns Hydrate exploration engineering
下载PDF
Geochemical characteristics and exploration significance of ultra-deep Sinian oil and gas from Well Tashen 5,Tarim Basin,NW China 被引量:3
3
作者 Zicheng Cao Anlai Ma +4 位作者 Qinqi Xu Quanyong Pan Kai Shang Fan Feng Yongli Liu 《Energy Geoscience》 EI 2024年第1期24-36,共13页
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ... The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs. 展开更多
关键词 Ultra-deep Sinian oil and gas Oil-cracking well Tashen 5 Tarim Basin
下载PDF
Horizontal well spacing optimization and gas injection simulation for the ultra-low-permeability Yongjin reservoir 被引量:1
4
作者 Yao Zhang Chengyuan Lv +3 位作者 Zengmin Lun Shuxia Zhao Yingfu He Ran Gao 《Energy Geoscience》 EI 2024年第1期196-203,共8页
Optimal spacing for vertical wells can be effectively predicted with several published methods,but methods suitable for assessing the proper horizontal well spacing are rare.This work proposes a method for calculating... Optimal spacing for vertical wells can be effectively predicted with several published methods,but methods suitable for assessing the proper horizontal well spacing are rare.This work proposes a method for calculating the optimal horizontal well spacing for an ultra-low permeability reservoir e the Yongjin reservoir in the Juggar Basin,northwestern China.The result shows that a spacing of 640m is the most economical for the development of the reservoir.To better develop the reservoir,simulation approaches are used and a new model is built based on the calculated well spacing.Since the reservoir has an ultralow permeability,gas injection is regarded as the preferred enhanced oil recovery(EOR)method.Injection of different gases including carbon dioxide,methane,nitrogen and mixed gas are modelled.The results show that carbon dioxide injection is the most efficient and economical for the development of the reservoir.However,if the reservoir produces enough methane,reinjecting methane is even better than injecting carbon dioxide. 展开更多
关键词 Ultra-low-permeability reservoir well spacing optimization Numerical simulation gas injection EOR
下载PDF
A novel steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs 被引量:3
5
作者 Zhang Liehui Zhao Yulong Liu Zhibin 《Petroleum Science》 SCIE CAS CSCD 2011年第1期63-69,共7页
It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne... It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells. 展开更多
关键词 Horizontal well point-source function bottom water driver gas reservoir steady-state productivity
下载PDF
Fracture Effectiveness and its Influence on Gas Productivity in Ultra-deep Tight Sandstone Reservoirs of the Keshen Gas Field,Tarim Basin
6
作者 XU Xiaotong ZENG Lianbo +6 位作者 DONG Shaoqun DIWU Pengxiang LI Haiming LIU Jianzhong HAN Gaosong XU Hui JI Chunqiu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第6期1557-1573,共17页
Fracture effectiveness plays a key role in gas productivity of ultra-deep tight sandstone reservoirs,Kuqa depression,Tarim Basin.Based on cores,thin sections,well logging,well testing and production data,the study eva... Fracture effectiveness plays a key role in gas productivity of ultra-deep tight sandstone reservoirs,Kuqa depression,Tarim Basin.Based on cores,thin sections,well logging,well testing and production data,the study evaluated fracture effectiveness and illustrated its impacts on gas productivity.High-angle and vertical shear fractures are the most important types.Distribution of effective fractures shows great heterogeneous.Fracture effectiveness is influenced by tectonism,diagenesis and in-situ stress.Earlier fractures or fractures in close to gypsum rock are easier to be filled.Completely filled fractures can be reopened under late tectonism.Dissolution improves local fracture effectiveness.Minerals spanning fracture surfaces protect fracture effectiveness from late compression.Fractures filled with calcite can be activated by acidification.Effective fractures parallel to maximum horizontal principal compressive stress direction show larger aperture.Overpressure can decrease the effective normal stress to maintain fracture effectiveness.With exploitation,decline in pore pressure reduces fracture effectiveness.Linear density,aperture,and strike of effective fractures influence gas productivity.Effective fractures greatly enhance matrix permeability.Therefore,more abundant and larger aperture fractures are always corresponded to higher productivity.However,effective fractures also facilitate late water invasion,especially,both mutually parallel.Intense water invasion leads to rapidly declines in productivity. 展开更多
关键词 tectonic fracture fracture effectiveness gas productivity ultra-deep tight sandstone Kuqa depression
下载PDF
A review of methane leakage from abandoned oil and gas wells:A case study in Lubbock,Texas,within the Permian Basin 被引量:2
7
作者 Stanley U.Opara Chinedu J.Okere 《Energy Geoscience》 EI 2024年第3期1-12,共12页
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o... In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells. 展开更多
关键词 Net zero carbon emissions Climate change mitigation Methane emission control Abandoned oil and gas(AOG)well Permian Basin
下载PDF
The Wellbore Temperature and Pressure Behavior during the Flow Testing of Ultra-Deepwater Gas Wells
8
作者 Xingbin Zhao Neng Yang +3 位作者 Hao Liang Mingqiang Wei Benteng Ma Dongling Qiu 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2523-2540,共18页
The transientflow testing of ultra-deepwater gas wells is greatly impacted by the low temperatures of seawater encountered over extended distances.This leads to a redistribution of temperature within the wellbore,whic... The transientflow testing of ultra-deepwater gas wells is greatly impacted by the low temperatures of seawater encountered over extended distances.This leads to a redistribution of temperature within the wellbore,which in turn influences theflow behavior.To accurately predict such a temperature distribution,in this study a comprehensive model of theflowing temperature and pressurefields is developed.This model is based on principles offluid mechanics,heat transfer,mass conservation,and energy conservation and relies on the Runge-Kutta method for accurate integration in time of the resulting equations.The analysis includes the examination of the influence of various factors,such as gasflow production rate,thermal diffusivity of the formation,and thermal diffusivity of seawater,on the temperature and pressure profiles of the wellbore.The keyfindings can be summarized as follows:1.Higher production rates during testing lead to increasedflowing temperatures and decreased pressures within the wellbore.However,in the presence of a seawater thermocline,a crossover inflowing temperature is observed.2.An increase in wellbore pressure is associated with larger pipe diameters.3.Greater thermal diffusivity of the formation results in more rapid heat transfer from the wellbore to the formation,which causes lowerflowing temperatures within the wellbore.4.In an isothermal layer,higher thermal diffusivity of seawater leads to increased wellboreflowing temperatures.Conversely,in thermocline and mixed layer segments,lower temperatures are noted.5.Production test data from a representative deep-water gas well in the South China Sea,used to calculate the bottom-seafloor-wellhead temperature and pressurefields across three operating modes,indicate that the average error in temperature prediction is 2.18%,while the average error in pressure prediction is 5.26%,thereby confirming the reliability of the theoretical model. 展开更多
关键词 Ultra-deepwater gas well wellboreflowing temperature-pressure profile heat transfer production testing
下载PDF
Study of inter-well interference in shale gas reservoirs by a robust production data analysis method based on deconvolution
9
作者 Wen-Chao Liu Cheng-Cheng Qiao +5 位作者 Ping Wang Wen-Song Huang Xiang-Wen Kong Yu-Ping Sun He-Dong Sun Yue-Peng Jia 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2502-2519,共18页
In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut... In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells. 展开更多
关键词 Shale gas Inter-well interference DECONVOLUTION Production data analysis Typical curves Multi-stage fractured horizontal well
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
10
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells
11
作者 Yongwei Duan Zhaopeng Zhu +2 位作者 Hui He Gaoliang Xuan Xuemeng Yu 《Fluid Dynamics & Materials Processing》 EI 2024年第2期349-364,共16页
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework... The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells. 展开更多
关键词 Shale gas fracturingfluid backflow the stimulated reservoir volume gas-water two-phase production
下载PDF
Numerical study on gas production via a horizontal well from hydrate reservoirs with different slope angles in the South China Sea
12
作者 Tingting Luo Jianlin Song +5 位作者 Xiang Sun Fanbao Cheng Madhusudhan Bangalore Narasimha Murthy Yulu Chen Yi Zhao Yongchen Song 《Deep Underground Science and Engineering》 2024年第2期171-181,共11页
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China... It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs. 展开更多
关键词 effective stress low‐permeability reservoirs natural gas hydrate production numerical simulation SETTLEMENT slope angle the South China
下载PDF
Modeling Natural Gas Productivity Recovery from a Hydrate Reservoir Well 被引量:1
13
作者 Bin Dou Hui Gao +1 位作者 Binbin Fan Lei Ren 《Engineering(科研)》 2013年第4期355-358,共4页
The hydrocarbon deposits have stimulated worldwide efforts to understand gas production from hydrate dissociation in hydrate reservoirs well. This paper deals with the potential of gas hydrates as a source of energy w... The hydrocarbon deposits have stimulated worldwide efforts to understand gas production from hydrate dissociation in hydrate reservoirs well. This paper deals with the potential of gas hydrates as a source of energy which is widely available in permafrost and oceanic sediments. It discusses methods for gas production from natural gas hydrates. Authors provide a detailed methodology used to model gas productivity recovery from hydrate reservoir well. The mathematical modelling of gas dissociation from hydrate reservoir as a tool for evaluating the potential of gas hydrates for natural gas production. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability. The model couples nth order decomposition kinetics with gas flow through porous media. The models provide a simple and useful tool for hydrate reservoir analysis. 展开更多
关键词 gas HYDRATES Natural gas Production HYDRATE DISSOCIATION Models Energy Sources
下载PDF
Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China 被引量:6
14
作者 MA Xinhua LI Xizhe +7 位作者 LIANG Feng WAN Yujin SHI Qiang WANG Yonghui ZHANG Xiaowei CHE Mingguang GUO Wei GUO Wei 《Petroleum Exploration and Development》 2020年第3期594-602,共9页
Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir ge... Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir geology and well logging interpretation of more than 20 appraisal wells,a correlation was built between the single well test production rate and the high-quality reservoir length drilled in the horizontal wells,high-quality reservoir thickness and the stimulation treatment parameters in over 100 horizontal wells,the dominating factors on horizontal well productivity were found out,and optimized development strategies were proposed.The results show that the deployed reserves of high-quality reservoir are the dominating factors on horizontal well productivity.In other words,the shale gas well productivity is controlled by the thickness of the high-quality reservoir,the high-quality reservoir drilling length and the effectiveness of stimulation.Based on the above understanding,the development strategies in Weiyuan shale gas play are optimized as follows:(1)The target of horizontal wells is located in the middle and lower parts of Longyi 11(Wei202 area)and Longyi 11(Wei204 area).(2)Producing wells are drilled in priority in the surrounding areas of Weiyuan county with thick high-quality reservoir.(3)A medium to high intensity stimulation is adopted.After the implementation of these strategies,both the production rate and the estimated ultimate recovery(EUR)of individual shale gas wells have increased substantially. 展开更多
关键词 Weiyuan shale gas play dominating factors of well productivity deployed reserves of high-quality reservoir thickness of high-quality reservoir high-quality reservoir drilling length effectiveness of stimulation development strategies optimization
下载PDF
益母草碱调节GAS6/Axl信号通路对冠心病大鼠心肌损伤的影响
15
作者 孟王桃 崔冬玲 +2 位作者 吴冬景 陈超 张颖颖 《中国药房》 北大核心 2025年第1期51-56,共6页
目的探讨益母草碱对生长停滞特异性蛋白6(GAS6)/酪氨酸蛋白激酶受体(Axl)信号通路的影响,阐明其减轻冠心病大鼠心肌损伤的机制。方法构建冠心病大鼠模型,将造模成功的大鼠按随机抽样方法分为模型组,益母草碱低、高剂量组(分别灌胃25、10... 目的探讨益母草碱对生长停滞特异性蛋白6(GAS6)/酪氨酸蛋白激酶受体(Axl)信号通路的影响,阐明其减轻冠心病大鼠心肌损伤的机制。方法构建冠心病大鼠模型,将造模成功的大鼠按随机抽样方法分为模型组,益母草碱低、高剂量组(分别灌胃25、100 mg/kg益母草碱+腹腔注射75 mg/kg生理盐水),益母草碱高剂量+GAS6/Axl信号通路抑制剂组(灌胃100 mg/kg益母草碱+腹腔注射75 mg/kg的R428),每组12只;另取12只正常大鼠作对照组。各给药组大鼠给予相应药物,对照组和模型组大鼠灌胃并腹腔注射等体积生理盐水,每天1次,连续48 d。给药结束后,检测大鼠心功能和血清中炎症因子及心肌损伤标志物水平;观察其心肌组织病理形态;检测其心肌组织细胞凋亡率和心肌组织中凋亡及GAS6/Axl信号通路相关蛋白表达。结果与对照组比较,模型组大鼠出现心肌细胞与心肌纤维排列紊乱、心肌细胞肥大、细胞核固缩等病变,左室射血分数、左室短轴缩短率、二尖瓣环舒张早期与舒张晚期运动速度之比及GAS6蛋白相对表达量和B细胞淋巴瘤2/B细胞淋巴瘤2相关X蛋白、磷酸化Axl/Axl比值均显著降低(P<0.05),肿瘤坏死因子α、白细胞介素1β、白细胞介素6、肌酸激酶同工酶、肌钙蛋白Ⅰ、肌红蛋白水平以及心肌组织细胞凋亡率和剪切型胱天蛋白酶3/胱天蛋白酶3比值均显著升高(P<0.05);益母草碱各剂量组大鼠上述病理情况及各检测指标均显著改善(P<0.05),且益母草碱高剂量组效果较益母草碱低剂量组明显(P<0.05);R428处理可逆转高剂量益母草碱对冠心病大鼠心肌损伤的改善作用(P<0.05)。结论益母草碱可减轻冠心病大鼠心肌损伤,其作用机制可能与激活GAS6/Axl信号通路相关。 展开更多
关键词 益母草碱 gas6/Axl信号通路 冠心病 心肌损伤
下载PDF
A smart productivity evaluation method for shale gas wells based on 3D fractal fracture network model 被引量:1
16
作者 WEI Yunsheng WANG Junlei +4 位作者 YU Wei QI Yadong MIAO Jijun YUAN He LIU Chuxi 《Petroleum Exploration and Development》 CSCD 2021年第4期911-922,共12页
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz... The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility. 展开更多
关键词 fractal discrete fracture network multiplicative cascade process embedded discrete fracture model intelligent history matching reservoir parameter inversion shale gas smart productivity evaluation
下载PDF
Optimization method of refracturing timing for old shale gas wells
17
作者 WANG Qiang ZHAO Jinzhou +2 位作者 HU Yongquan LI Yongming WANG Yufeng 《Petroleum Exploration and Development》 SCIE 2024年第1期213-222,共10页
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f... Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance. 展开更多
关键词 shale gas well fully coupled seepage-geomechanical model REFRACTURING timing optimization influencing factor
下载PDF
Productivity Prediction Model of Perforated Horizontal Well Based on Permeability Calculation in Near-Well High Permeability Reservoir Area
18
作者 Shuangshuang Zhang Kangliang Guo +3 位作者 Xinchen Gao Haoran Yang Jinfeng Zhang Xing Han 《Energy Engineering》 EI 2024年第1期59-75,共17页
To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around t... To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells. 展开更多
关键词 Perforated horizontal well PERMEABILITY productivity model sensitivity analysis
下载PDF
Hydrocarbon gas huff-n-puff optimization of multiple horizontal wells with complex fracture networks in the M unconventional reservoir
19
作者 Hao-Chuan Zhang Yong Tang +5 位作者 You-Wei He Yong Qin Jian-Hong Luo Yu Sun Ning Wang De-Qiang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1018-1031,共14页
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth... The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks. 展开更多
关键词 Unconventional oil reservoir Complex fracture network Hydrocarbon gas huff-n-puff Parameter optimization Numerical simulation
下载PDF
Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation
20
作者 Na Zhao Xiquan Wang +6 位作者 Jun Ma Xiaohong Li Jufeng Cao Jie Zhou Linmei Wu Peiyi Zhao Weidong Cao 《The Crop Journal》 SCIE CSCD 2024年第4期1233-1241,共9页
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ... In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity. 展开更多
关键词 Green manure STRAW MANURE Soil organic carbon Soil quality Crop production Diversified cropping
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部