Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophi...Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.展开更多
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C...The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.展开更多
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol...A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.展开更多
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou...The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.展开更多
We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and singl...We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to~1 eV,thereby constructing the importance curve and yield curve of the full energy range.The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency,thereby constructing extreme curves.The three curves,which quantify the transmutation rate of the nuclei in each energy region,are of physical significance because they have similar distributions.A high-resolution neutronics model for ^(238)Pu production was established based on these three curves,and its universality and feasibility were proven.The neutronics model can guide the neutron spectrum optimization and improve the yield of ^(238)Pu by up to 18.81%.The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution,thus providing theoretical support for high-flux reactor design and irradiation production of ^(238)Pu.展开更多
This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is bel...This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is below the unity and consequently consumes more energy than it supplies, due to the high energy amplification factor of the PWR fission reactor, the global yield is widely superior to 1. As the energy supplied by the fusion reactor is relatively low and as the neutrons supplied are mainly issued from D-D fusions (at 2.45 MeV), the problems of heat flux and neutrons damage connected with materials, as with D-T fusion reactors are reduced. Of course, there is no need to produce Tritium with this D-D fusion reactor. This type of reactor is able to incinerate any mixture of natural Uranium, natural Thorium and depleted Uranium (waste issued from enrichment plants), with natural Thorium being the best choice. No enriched fuel is needed. So, this type of reactor could constitute a source of energy for several thousands of years because it is about 90 more efficient than a standard fission reactor, such as a PWR or a Candu one, by extracting almost completely the energy from the fertile materials U238 and Th232. For the fission part, PWR technology is mature. For the fusion part, it is based on a reasonable hypothesis done on present Stellarators projects. The working of this reactor is continuous, 24 hours a day. In this paper, it will be targeted a reactor able to provide net electric power of about 1400 MWe, as a big fission power plant.展开更多
This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is consid...This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any.展开更多
Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in th...Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault.展开更多
This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,wit...This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,with its ability to engineer materials at the atomic scale,offers significant improvements in reactor safety,efficiency,and longevity.In fission reactors,nanomaterials enhance fuel rod integrity,optimize thermal management,and improve in-core instrumentation.Fusion reactors benefit from nanostructured materials that bolster containment and heat dissipation,addressing critical challenges in sustaining fusion reactions.The integration of SMAs(shape memory alloys),or MMs,further amplifies these advancements.These materials,characterized by their ability to revert to a pre-defined shape under thermal conditions,provide self-healing capabilities,adaptive structural components,and enhanced magnetic confinement.The synergy between nanotechnology and MMs represents a paradigm shift in nuclear reactor technology,promising a future of cleaner,more efficient,and safer nuclear energy production.This innovative approach positions the nuclear industry to meet the growing global energy demand while addressing environmental and safety concerns.展开更多
An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design ...An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.展开更多
Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study e...Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study establishes a thermal-hydraulics reduced-order model(ROM)for nuclear reactor circuit systems.The full-order circuit system calculation model is first established and verified and then used to calculate the thermal-hydraulic properties of the circuit system under different states as snapshots.The proper orthogonal decomposition method is used to extract the basis functions from snapshots,and the ROM is constructed using the least-squares method,effectively reducing the difficulty in constructing the ROM.A comparison between the full-order simulation and ROM prediction results of the AP1000 circuit system shows that the proposed ROM can improve computational efficiency by 1500 times while achieving a maximum relative error of 0.223%.This research develops a new direction and perspective for the digital twin modeling of nuclear reactor system circuits.展开更多
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn...In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.展开更多
Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid d...Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid dynamics(CFD)model considering heat generation of wet-etching reactions to investigate the fluid flow and heat transfer in the wet-etch reactor.The backflow is observed below and above the wafer region,as the flow resistance in this region is high.The temperature on the upper part of a wafer is higher due to the accumulation of reaction heat,and the average temperature of the side wafer is highest as its convective heat transfer is weakest.Narrowing the gap between wafer and reactor wall can force the etchant to flow in the wafer region and then facilitate the convective heat transfer,leading to better within-wafer and wafer-to-wafer etch uniformities.An inlet angle of 60°balances fluid by-pass and mechanical energy loss,and it yields the best temperature and etch uniformities.The batch with 25wafers has much wider flow channels and much lower flow resistance compared with that with 50wafers,and thus it shows better temperature and etch uniformities.These results and the CFD model should serve to guide the optimal design of batch-processing wet-etch reactors.展开更多
This paper presents the results of the development and creation of plasma-chemical reactors for mobile and stationary installations for the destruction and disposal of solid, liquid, gaseous and mixed medical waste ba...This paper presents the results of the development and creation of plasma-chemical reactors for mobile and stationary installations for the destruction and disposal of solid, liquid, gaseous and mixed medical waste based on the domestic plasma generator PUN-1, with air as the plasma-forming gas. The design and principle of operation of plasma-chemical reactors installed on mobile experimental and industrial plants “Plazmon-1,2,3”, as well as the main features of the plasma waste disposal process are described.展开更多
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbin...The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).展开更多
The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel....The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents.展开更多
Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by adva...Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role.展开更多
Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction mo...Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.展开更多
A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a...A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.展开更多
基金supported by the National Natural Science Foundation of China (No.NSFC20976069)the Fundamental Research Funds for the Central Universities,China (No.JUSRP111A12)+1 种基金the Higher School Science and Technology Innovation Project of Cultivating the Capital Project,China (No.708048)the Selfdetermined Research Program of Jiangnan University (No.JUSRP11006)
文摘Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.
基金partially supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)+1 种基金EP/T000414/1 PREdictive Modeling with QuantIfication of UncERtainty for MultiphasE Systems(PREMIERE)the Leverhulme Centre for Wildfires,Environment,and Society through the Leverhulme Trust(No.RC-2018-023).
文摘The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.
基金This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010300).
文摘A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.
基金supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063)。
文摘The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
基金supported by Natural Science Foundation of China (No. 12305190)Lingchuang Research Project of China National Nuclear Corporation (CNNC)the Science and Technology on Reactor System Design Technology Laboratory
文摘We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to~1 eV,thereby constructing the importance curve and yield curve of the full energy range.The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency,thereby constructing extreme curves.The three curves,which quantify the transmutation rate of the nuclei in each energy region,are of physical significance because they have similar distributions.A high-resolution neutronics model for ^(238)Pu production was established based on these three curves,and its universality and feasibility were proven.The neutronics model can guide the neutron spectrum optimization and improve the yield of ^(238)Pu by up to 18.81%.The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution,thus providing theoretical support for high-flux reactor design and irradiation production of ^(238)Pu.
文摘This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is below the unity and consequently consumes more energy than it supplies, due to the high energy amplification factor of the PWR fission reactor, the global yield is widely superior to 1. As the energy supplied by the fusion reactor is relatively low and as the neutrons supplied are mainly issued from D-D fusions (at 2.45 MeV), the problems of heat flux and neutrons damage connected with materials, as with D-T fusion reactors are reduced. Of course, there is no need to produce Tritium with this D-D fusion reactor. This type of reactor is able to incinerate any mixture of natural Uranium, natural Thorium and depleted Uranium (waste issued from enrichment plants), with natural Thorium being the best choice. No enriched fuel is needed. So, this type of reactor could constitute a source of energy for several thousands of years because it is about 90 more efficient than a standard fission reactor, such as a PWR or a Candu one, by extracting almost completely the energy from the fertile materials U238 and Th232. For the fission part, PWR technology is mature. For the fusion part, it is based on a reasonable hypothesis done on present Stellarators projects. The working of this reactor is continuous, 24 hours a day. In this paper, it will be targeted a reactor able to provide net electric power of about 1400 MWe, as a big fission power plant.
文摘This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any.
基金supported by the China Postdoctoral Science Foundation(Grant Number 2023M742598).
文摘Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault.
文摘This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,with its ability to engineer materials at the atomic scale,offers significant improvements in reactor safety,efficiency,and longevity.In fission reactors,nanomaterials enhance fuel rod integrity,optimize thermal management,and improve in-core instrumentation.Fusion reactors benefit from nanostructured materials that bolster containment and heat dissipation,addressing critical challenges in sustaining fusion reactions.The integration of SMAs(shape memory alloys),or MMs,further amplifies these advancements.These materials,characterized by their ability to revert to a pre-defined shape under thermal conditions,provide self-healing capabilities,adaptive structural components,and enhanced magnetic confinement.The synergy between nanotechnology and MMs represents a paradigm shift in nuclear reactor technology,promising a future of cleaner,more efficient,and safer nuclear energy production.This innovative approach positions the nuclear industry to meet the growing global energy demand while addressing environmental and safety concerns.
基金supported by the Project for Scientific Research of West Anhui University(No.00701092282)。
文摘An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.
基金supported by the National Natural Science Foundation of China(No.12205389)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011735)Science and Technology on Reactor System Design Technology Laboratory(No.KFKT-05-FWHT-WU-2023014).
文摘Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study establishes a thermal-hydraulics reduced-order model(ROM)for nuclear reactor circuit systems.The full-order circuit system calculation model is first established and verified and then used to calculate the thermal-hydraulic properties of the circuit system under different states as snapshots.The proper orthogonal decomposition method is used to extract the basis functions from snapshots,and the ROM is constructed using the least-squares method,effectively reducing the difficulty in constructing the ROM.A comparison between the full-order simulation and ROM prediction results of the AP1000 circuit system shows that the proposed ROM can improve computational efficiency by 1500 times while achieving a maximum relative error of 0.223%.This research develops a new direction and perspective for the digital twin modeling of nuclear reactor system circuits.
文摘In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.
基金financially supported by the National Natural Science Foundation of China(22378115 and 22078090)the Shanghai Rising-Star Program(21QA1402000)+1 种基金the Natural Science Foundation of Shanghai(21ZR1418100)the Fundamental Research Funds for the Central Universities(JKA01231803)。
文摘Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid dynamics(CFD)model considering heat generation of wet-etching reactions to investigate the fluid flow and heat transfer in the wet-etch reactor.The backflow is observed below and above the wafer region,as the flow resistance in this region is high.The temperature on the upper part of a wafer is higher due to the accumulation of reaction heat,and the average temperature of the side wafer is highest as its convective heat transfer is weakest.Narrowing the gap between wafer and reactor wall can force the etchant to flow in the wafer region and then facilitate the convective heat transfer,leading to better within-wafer and wafer-to-wafer etch uniformities.An inlet angle of 60°balances fluid by-pass and mechanical energy loss,and it yields the best temperature and etch uniformities.The batch with 25wafers has much wider flow channels and much lower flow resistance compared with that with 50wafers,and thus it shows better temperature and etch uniformities.These results and the CFD model should serve to guide the optimal design of batch-processing wet-etch reactors.
文摘This paper presents the results of the development and creation of plasma-chemical reactors for mobile and stationary installations for the destruction and disposal of solid, liquid, gaseous and mixed medical waste based on the domestic plasma generator PUN-1, with air as the plasma-forming gas. The design and principle of operation of plasma-chemical reactors installed on mobile experimental and industrial plants “Plazmon-1,2,3”, as well as the main features of the plasma waste disposal process are described.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金National Natural Science Foundation Joint Fund Key Project(U20A20292)Task Book for Shandong Provincial Science and Technology Small and Medium-Sized Enterprise Innovation Capability Enhancement Engineering Project(2023TSGC0005).
文摘The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).
基金the National Natural Science Foundation of China(No.11905285)the Shanghai Natural Science Foundation(No.20ZR1468700)the Youth Innovation Promotion Association CAS(No.2022258).
文摘The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents.
基金supported by the National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618,202203021212134)。
文摘Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role.
基金supported by the National Key R&D Program of China (No. 2019YFB1900901)the Fundamental Research Funds for the Central Universities (No. 2021MS032)
文摘Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.
基金supported by the National Key Research and Development Program of China(2022YFE0101600)the National Natural Science Foundation of China(U23A20117)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20220002,BE2022024)the Leading Talents Program of Zhejiang Province(2024C03223)Topnotch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.