期刊文献+
共找到771篇文章
< 1 2 39 >
每页显示 20 50 100
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
1
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
Error Analysis of Liquid Holdup Measurement in Gas-Liquid Annular Flow Through Circular Pipes Using High-Speed Camera Method 被引量:3
2
作者 LIU Li BAI Bofeng 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期34-40,共7页
Accurate measurement of gas-liquid phase fraction is essential for the proper modelling of the pressure drop, heat transfer coefficient, mass transfer rate and interfacial area in two-phase flows. In this paper, takin... Accurate measurement of gas-liquid phase fraction is essential for the proper modelling of the pressure drop, heat transfer coefficient, mass transfer rate and interfacial area in two-phase flows. In this paper, taking the issue of optical distortion into account, an analytical model was proposed to estimate and correct the liquid holdup in gas-liquid annular flow through a circular pipe using high-speed camera method. The error in the liquid holdup measurement generated from different refractive indices among transparent circular pipe, liquid film and air core was firstly theoretically analyzed based on the geometric optics. Experimental tests were then carried out to identify the difference as well as to validate the proposed model. Results indicated that the prediction of the liquid holdup has a good performance with the experimental data(i.e., mean relative error is 4.1%) and the measured liquid holdup is larger than the real one. It was found that the measured liquid holdup is larger than the real one. Generally, when the real liquid holdup gets smaller, the discrepancy between the measured liquid holdup by image and the real liquid holdup becomes more significant. Thus, after measuring the liquid holdup from the images, the value of the measured liquid holdup must be corrected by the present model in order to obtain the real liquid holdup. 展开更多
关键词 gas-liquid annular flow liquid holdup optical refraction analytical correction
原文传递
Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel 被引量:1
3
作者 Xuancheng Liu Hongye Li +4 位作者 Yibing Song Nan Jin Qingqiang Wang Xunli Zhang Yuchao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期192-201,共10页
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti... The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations. 展开更多
关键词 MICROREACTOR Microchannels Mass transfer WETTABILITY Taylor flow gas-liquid two-phase
下载PDF
Mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device
4
作者 Xin Xu Na Xu +3 位作者 Wei Zhang Junwen Wang Yao Li Chen Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期37-48,共12页
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow... Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification. 展开更多
关键词 gas-liquid microreactor annular flow Mass transfer mechanism Mass transfer relationship Multi-objective particle swarm optimization
下载PDF
A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe
5
作者 Xiaochu Luo Xiaobing Qi +3 位作者 Zhao Luo Zhonghao Li Ruiquan Liao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1233-1249,共17页
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel... Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%. 展开更多
关键词 Forced annular flow dynamic conductivity probe void fraction gas-liquid flow liquid film thickness
下载PDF
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
6
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump
7
作者 Dongwei Wang Lijian Cao +1 位作者 Weidong Wang Jiajun Hu 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1103-1122,共20页
A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigat... A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance. 展开更多
关键词 Self-priming pump self-priming time numerical calculation gas-liquid two-phase flow
下载PDF
Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition 被引量:19
8
作者 Wang Zhiyuan Sun Baojiang 《Petroleum Science》 SCIE CAS CSCD 2009年第1期57-63,共7页
It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conser... It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time. 展开更多
关键词 annular multiphase flow phase transition natural gas hydrate gas kick
下载PDF
Numerical Simulation of Gas-Liquid Flow in a Stirred Tank with a Rushton Impeller 被引量:29
9
作者 王卫京 毛在砂 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第4期385-395,共11页
The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the sti... The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks. 展开更多
关键词 stirred tank gas-liquid flow Rushton impeller inner-outer iteration
下载PDF
Design and Experimental Analyses of Small-flow High-head Centrifugal-vortex Pump for Gas-Liquid Two-phase Mixture 被引量:27
10
作者 朱祖超 谢鹏 +2 位作者 偶国富 崔宝玲 李昳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期528-534,共7页
The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-pha... The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-phase mixture. An HTB-5/60 type sample pump was developed and tested on a closed-loop test rig. Experimental studies on performance and cavitation tests for gas-liquid two-phase mixture were carried out compared with pure-water experimental results. Also the effect of gas phase on pump was analyzed and discussed. The experimental results show that performance and cavitation characteristics of the sample purnp deteriorates progressively with increasing volume fraction of gas. When the total capacity Qm is between 4.5 m^3·h^-1 and 6 m^3·h^-1 and the gas flow rate qg below 0.66 m^3·h^-1, or qg/Qm is lower than 15%, the characteristic curves are approximately parallel to those in pure water test, but the performance deteriorates sharply until an abrupt flow-cutting at a critical volume fraction of gas. This pump is found suitable for transporting gas-liquid two-phase mixture when working around rated capacity of 5 m^3·h^-1 with qglQm below 15%. 展开更多
关键词 centrifugal-vortex pump gas-liquid two-phase flow performance and cavitation test
下载PDF
Flow Regime Identification of Gas-liquid Two-phase Flow Based on HHT 被引量:11
11
作者 孙斌 张宏建 +1 位作者 程路 赵玉晓 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期24-30,共7页
A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed in... A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation. 展开更多
关键词 flow regime Hilbert-Huang transform differential pressure signal intrinsic mode function gas-liquid two-phase flow
下载PDF
Experimental Investigation of Vibration Response of A Free-Hanging Flexible Riser Induced by Internal Gas-Liquid Slug Flow 被引量:10
12
作者 ZHU Hong-jun ZHAO Hong-lei GAO Yue 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期633-645,共13页
The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved ... The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved riser model and the response displacements of the riser were simultaneously recorded by high speed cameras. The gas superficial velocity ranges from 0.1 m/s to 0.6 m/s while the liquid superficial velocity from 0.06 m/s to 0.3 m/s.Severe slugging type 3, unstable oscillation flow and relatively stable slug flow were observed in the considered flow rates. Severe slugging type 3 characterized by premature gas penetration occurs at relatively low flow rates. Both the cycle time and slug length become shorter as the gas flow rate increases. The pressure at the riser base undergoes a longer period and larger amplitude of fluctuation as compared with the other two flow regimes. Additionally, severe slugging leads to the most vigorous in-plane vibration. However, the responses in the vertical and horizontal directions are not synchronized. The vertical vibration is dominated by the second mode while the horizontal vibration is dominated by the first mode. Similar to the vortex-induced vibration, three branches are identified as initial branch, build-up branch and descending branch for the response versus the mixture velocity of gas-liquid flow. 展开更多
关键词 gas-liquid two-phase flow severe slugging liquid slug flexible riser flow-induced vibration
下载PDF
Measurement of Liquid Concentration Fields Near Interface with Cocurrent Gas-Liquid Flow Absorption Using Holographic Interferometry 被引量:5
13
作者 郭莹 袁希钢 +1 位作者 曾爱武 余国琮 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6期747-753,共7页
Real-time laser holographic interferometry was applied to measure liquid concentrations of CO2 in the vicinity of gas-liquid free interface under the conditions of cocurrent gas-liquid flow for absorption of CO2 by et... Real-time laser holographic interferometry was applied to measure liquid concentrations of CO2 in the vicinity of gas-liquid free interface under the conditions of cocurrent gas-liquid flow for absorption of CO2 by ethanol. The influences of the Reynolds number on the measurable interface concentration and on the film thickness were discussed. The results show that CO2 concentration decreases exponentially along the mass transfer direction,and the concentration gradient increases as Reynolds number of either liquid or gas increases. CO2 concentrations fluctuate slightly along the direction of flow; on the whole, there is an increase in CO2 concentration. The investigation also demonstrated that film thickness decreases with the increase of Reynolds number of either of the two phases. Sherwood number representing the mass transfer coefficient was finally correlated as a function of the hydrodynamic parameters and the physical properties. 展开更多
关键词 cocurrent gas-liquid flow absorption concentration field NEAR interface HOLOGRAPHIC INTERFEROMETRY
下载PDF
Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine 被引量:6
14
作者 周云龙 陈飞 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期832-840,共9页
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide... The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification. 展开更多
关键词 flow regime identification gas-liquid two-phase flow image processing multi-feature fusion support vector machine
下载PDF
Local Flow Regime Transition Criteria of Gas-Liquid Two-phase Flow in Vertical Upward Tube with a Horizontal Rod 被引量:4
15
作者 胡志华 杨燕华 +1 位作者 刘磊 周芳德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4期442-449,共8页
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert... The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed. 展开更多
关键词 gas-liquid two-phase cross flow local flow pattern transition
下载PDF
Experimental Research on Gas-Liquid Two-Phase Spiral Flow in Horizontal Pipe 被引量:8
16
作者 Wang Shuli Rao Yongchao +1 位作者 Wu Yuxian Wang Xiaobing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第3期24-32,共9页
In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different para... In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work. 展开更多
关键词 gas-liquid two-phase spiral flow VANE flow pattern flow pattern map experimental research
下载PDF
An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe 被引量:5
17
作者 夏国栋 周芳德 胡明胜 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第4期436-440,共5页
In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical pr... In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall. 展开更多
关键词 gas-liquid slug flow void fraction vertical pipe
下载PDF
Numerical Simulation and Experimental Analysis of the Influence of Asymmetric Pressure Conditions on the Splitting of a Gas-Liquid Two-Phase Flow at a T-Junction 被引量:4
18
作者 Lihui Ma Limin He +1 位作者 Xiaoming Luo Xiangran Mi 《Fluid Dynamics & Materials Processing》 EI 2021年第5期959-970,共12页
Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid... Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement. 展开更多
关键词 Two-phase flow PRESSURE flow loop gas-liquid split characteristics simulation
下载PDF
A novel complex network-based deep learning method for characterizing gas-liquid two-phase flow 被引量:4
19
作者 Zhong-Ke Gao Ming-Xu Liu +1 位作者 Wei-Dong Dang Qing Cai 《Petroleum Science》 SCIE CAS CSCD 2021年第1期259-268,共10页
Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to t... Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to the recognition of flow regime and the optimal design of industrial equipment.In this paper,we propose a novel complex network-based deep learning method for characterizing gas-liquid flow.Firstly,we map the multichannel measurements to multiple limited penetrable visibility graphs(LPVGs)and obtain their degree sequences as the graph representation.Based on the degree distribution,we analyze the complicated flow behavior under different flow structures.Then,we design a dual-input convolutional neural network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measurement of gas void fraction.We implement the model with two parallel branches with the same structure,each corresponding to one input.Each branch consists of a channel-projection convolutional part,a spatial-temporal convolutional part,a dense block and an attention module.The outputs of the two branches are concatenated and fed into several full connected layers for the classification and measurement.At last,our method achieves an accuracy of 95.3%for the classification of flow structures,and a mean squared error of 0.0038 and a mean absolute percent error of 6.3%for the measurement of gas void fraction.Our method provides a promising solution for characterizing gas-liquid flow and measuring flow parameters. 展开更多
关键词 gas-liquid flow Gas void fraction flow structure Limited penetrable visibility graph Deep learning
下载PDF
Effect of the Inclination Angle on Slippage Loss in Gas-Liquid Two-Phase Flow 被引量:4
20
作者 Yushan Liu Yubin Su +2 位作者 Zhenhua Wu Wei Luo Ruiquan Liao 《Fluid Dynamics & Materials Processing》 EI 2020年第3期475-488,共14页
The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horiz... The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss. 展开更多
关键词 Inclined pipes gas-liquid flow slippage loss pressure drop gas-liquid ratio
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部