The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, ...The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, which contains both dibenzhydryl and phenyl groups, was determined by X-ray crystallography. The compound has a pseudo-tetrahedral geometry at the Ni center, showing pseudo-C2-symmetry. Upon activation with modified methylaluminoxane (MMAO), Ni1 exhibits high catalytic activity up to 1.02 × 107 g PE (mol Ni h)−1 toward ethylene polymerization, enabling the synthesis of high molecular weight branched polyethylene. The molecular weights and branching densities could be tuned over a very wide range. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature. The branching densities were decreased with increasing the polymerization temperature.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecula...A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.展开更多
The copolymerization of ethylene with dieyclopentadiene (DCP) in the presence of a constrained geometry tetramethylcyclopentadi-enyl-phenoxytitanium catalyst [ 2,4-' Bu2-6-( 2,3,4,5-Me4 -Cp ) -PhO ] TICl2, combin...The copolymerization of ethylene with dieyclopentadiene (DCP) in the presence of a constrained geometry tetramethylcyclopentadi-enyl-phenoxytitanium catalyst [ 2,4-' Bu2-6-( 2,3,4,5-Me4 -Cp ) -PhO ] TICl2, combined with AI( iBu)3/Ph3C^+ B( CsF5 )4^- cocatalyst system was studied. The copolymers that were formed were characterized by ' H and ,3 C NMR, differential scanning calorimetry ( DSC), SEM, and X-ray diffraction (XRD) analyses. The re- suits of the analysis indicate that the copolymers of ethylene with dicyclopentadiene are amorphous and display two or more melting temperatures in their DSC diagrams. Moreover, the morphologies of the copolymers are quite different from that of polyethylenes.展开更多
A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precur...A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in...展开更多
Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for C...Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for Cp_2ZrCl_2catalyst Results of X-ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, ultraviolet spectroscopy andscanning electron microscope measurements show that the catalytic sites have been linked through MAO on the PE-graft-4-vinylpyridine (PEVP). The percentages of grafting 4-vinylpyridine and supported Cp_2ZrCl_2 depend on the size ofpolyethylene powder. The smaller the polyethylene powder, the more percent of 4-vinylpyridine groups and Cp_2ZrCl_2 existon the polyethylene chains, and the PEVP-supported catalyst has a relatively high activity for ethylene polymerization.展开更多
Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethyl...Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.展开更多
A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of support...A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.展开更多
Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ ...Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.展开更多
Aluminoxanes containing both ethyl and iso-butyl groups were synthesized by thehydrolysis of Al(C2H3)3 (TEA)/Al(i-C4H9)3 (TIBA) mixtures. The aluminoxane made from theTEA/TIBA mixture of molar ratio 7:3 showed cocatal...Aluminoxanes containing both ethyl and iso-butyl groups were synthesized by thehydrolysis of Al(C2H3)3 (TEA)/Al(i-C4H9)3 (TIBA) mixtures. The aluminoxane made from theTEA/TIBA mixture of molar ratio 7:3 showed cocatalyst activity of about five times as those ofethylaluminoxane or isobutylaluminoxane for ethylene polymerization catalyzed by Cp2ZrCl2. Thealuminoxane was characterized and the possible reasons for its high activity were discussed.展开更多
A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygo...A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygorskite with MAO or Al(i-Bu)3 was not necessary, gave the highest activity among these supported catalysts and could be more robust than homogeneous Cp2TiCl2. With the direct supported catalyst, no significant activity loss was observed under low Al/Ti molar ratios (Al/Ti=300) and the decay of polymerization rate was slower when compared to the other supported catalysts. It was found that the surface Lewis acidity of palygorskite after thermal treatment played an important role in activation of metallocene compound and resulted in high catalyst activity.展开更多
Three ansa-metallocenes(Me_2C)(Me_2Si)Cp_2TiCl_2(1),[(CH_2)_5C](Me_2Si)Cp_2TiCl_2 (2)and (Me_2C)(Me_2Si)Cp_2ZrCl_2 (3)with larger dihedral angles and longer distance from metal to the center of Cp planes were synthesi...Three ansa-metallocenes(Me_2C)(Me_2Si)Cp_2TiCl_2(1),[(CH_2)_5C](Me_2Si)Cp_2TiCl_2 (2)and (Me_2C)(Me_2Si)Cp_2ZrCl_2 (3)with larger dihedral angles and longer distance from metal to the center of Cp planes were synthesized and used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO).In the case of ethylene polymerization,compared the feature structures of unbridged metallocenes, singly bridged metallocenes and doubly bridged metallocenes 1,2,3,there exhibit the relationship bet...展开更多
The polymerization of ethylene by two iron-based catalysts, {[2,6-ArN=C(Me)(2)C5H3N]FeCl2} (Ar = 2,6-C6H3-Me-2 I; 2,6-C6H3 (i-Pr)(2) II) has been investigated. Catalyst II produces higher molecular weight polyethylene...The polymerization of ethylene by two iron-based catalysts, {[2,6-ArN=C(Me)(2)C5H3N]FeCl2} (Ar = 2,6-C6H3-Me-2 I; 2,6-C6H3 (i-Pr)(2) II) has been investigated. Catalyst II produces higher molecular weight polyethylene (PE) and broadened polydispersities relative to catalyst I under analogous conditions and all polymers are linear. The kinetic profiles with iron catalysts showed a smooth pattern during both rate build-up and rate lowering, which are different from the metallocene catalysts. The polymerization activity increases with Al/Fe value and an optimum temperature range at 40 similar to 45 degreesC was observed. The molecular weight of PE decreases with the increase of Al/Fe ratio and rise of polymerization temperature.展开更多
The condensation of acetylacetone (CH3COCH2COCH3) with benzdine (H2N-C6H4-C6H4-NH2) yielded diimine ligand 1 [HOC(Me)C(H)(Me)C=N(p-C6H4)(C6H4-p)N= C(Me)C(H)C(Me)OH)], which was converted into sodi...The condensation of acetylacetone (CH3COCH2COCH3) with benzdine (H2N-C6H4-C6H4-NH2) yielded diimine ligand 1 [HOC(Me)C(H)(Me)C=N(p-C6H4)(C6H4-p)N= C(Me)C(H)C(Me)OH)], which was converted into sodium salts. And then the sodium salts reacted with monosalicylaldiminato titanium complex 2{[3,5-di-But′2-(O)C6H2CHN(PH)]TiCl3(THF)} in dried dichloromethane to give a new benzdine-bridged binuclear complex 3{[3,5-di-Bu′-2-(O)C6H2CHN(PH)]2 [OC(Me)C(H)(Me)C=N(p-C6H4)-(C6H4-p)N=C(Me)C(H) C(Me)]Ti2Cl4}. The complex 3 was characterized by ^1HNMR and elemental analysis. In the presence of MAO(methylaluminoxane), the complex 3 in toluene was effective to catalyze polymerization, affording moderately high catalytic activity 1.93 × 10^5 g PE/(mol.Ti.h)]and high molecular weight polyethylene [5.63× 10^5 g/moll. The high temperature gel permeation chromatography (GPC) curve of polyethylene obtained revealed a single peak, but the molecular weight distribution (MWD = 3.21) is obviously broader than that of the similar mononuclear titanium complex. The melting points of the obtained polyethylene reaches 138 ℃, indicating that the polyethylene is of high crystallinity.展开更多
By treating disodium(thiophenedimethylene)dicyclopentadienide C4H2S(CH2C5H4Na)2 with two equivalent of CpTiCl3 or CpZrC13 DME at 0℃ in THF, two new thiophenedimethylene bridged binuclear metallocenes [Cl2MC5H5][C...By treating disodium(thiophenedimethylene)dicyclopentadienide C4H2S(CH2C5H4Na)2 with two equivalent of CpTiCl3 or CpZrC13 DME at 0℃ in THF, two new thiophenedimethylene bridged binuclear metallocenes [Cl2MC5H5][C5H4CH2C4H2SCH2C5H4][C5H5MCl2] (M = Ti 3, M = Zr 4) were synthesized in high yield and their structures were characterized by ^1H-NMR. These complexes were used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). The effects of polymerization temperature, time, concentration of catalyst, molar ratio of MAO/Cat on polymerization were studied in detail. The catalytic activities of thiophenedimethylene bridged binuclear metallocene catalysts (3, 4) reached 2.44 × 10^5 g PE mol^-1 cat^-1· h^-1, 9.61 × 10^5 g PE mol^-1 · cat^-1· h^-1 respectively, which are higher than that of pheneyldimethylene bridged binuclear metallocene catalysts and much higher than that of corresponding mononuclear metallocenes (Cp2TiCl2 and Cp2ZrCl2). The molecular weight distribution curves of polyethylenes produced by binuclear metallocene catalysts (3, 4) and by mononuclear metallocene catalyst have only single peak, but the former (MWD = 3.5-4.7) is obviously broader than the latter (MWD = 2.0-2.2).展开更多
A monocyclopentadienyl titanium complex containing 8-quinolinolato (QCpTiCl_2) was synthesized. Its activities in ethylene polymerization at various Al/Ti molar ratios, different temperatures and activation time were ...A monocyclopentadienyl titanium complex containing 8-quinolinolato (QCpTiCl_2) was synthesized. Its activities in ethylene polymerization at various Al/Ti molar ratios, different temperatures and activation time were investigated. The activity with a Al/Ti molar ratio of 500 exhibited a maximum of 2.8×10~5 g/(mol.h) at 30℃. The activation time of QCpTiCl_2 with MAO before polymerization also plays a role on the activity. The structural properties of the produced polyethylene (molecular weight, molecular weight distribution and melting point) were discussed. Kinetic behaviors of ethylene polymerization with the QCpTiCl_2/MAO system at different Al/Ti molar ratios were studied. For the QCpTiMeCl/MAO system and the CpTiMe_2Cl/MAO system, binding energies of the examined intermediates were calculated by quantum-mechanical method based on ADF program, respectively. It is confirmed that the chlorinebridged adduct formed by the reaction of QCpTiMeCl with MAO is thermodynamically steady. In the case of the QCpTiMeCl/MAO system, olefin-separated ion pair (OSIP) mechanism is much favorable than ion-pair dissociation (IPD) mechanism. The experimental result on the CpTiMe_2Cl/MAO system showed lower activity for ethylene polymerization than that on the QCpTiMeCl/MAO system, which revealed that the CpTiMe_2Cl/MAO system is unfavorable to form active species with ethylene.展开更多
An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene poly...An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene polymerization and theeffects of polymerization conditions such as temperature, aluminum/iron molar ratio on the activity of catalyst and thecharacteristics of polyethylene were reported. The unsymmetric catalyst 1' has a good catalytic performance of 3.47×10~6 gPE·mol^(-1)·Fe·h^(-1) at 40℃ with aluminum/iron molar ratio = 2500. A dependence of catalyst activity on themethylaluminoxane (MAO) concentration and reaction temperature was found. The molecular weight (MW) of polyethylenewith broad dispersity is about 10~4-10~5 g/mol. The melting temperature and branching of polyethylenes vary with changingreaction temperature and aluminum/iron molar ratio.展开更多
Poly(ethylene methyl phosphate)-poly(ethylene glycol)-poly(ethylene methyl phosphate) triblock copolymers carrying hydroxyl group at both chain ends were synthesized with sodium poly(ethylene glycol)ate as initiator. ...Poly(ethylene methyl phosphate)-poly(ethylene glycol)-poly(ethylene methyl phosphate) triblock copolymers carrying hydroxyl group at both chain ends were synthesized with sodium poly(ethylene glycol)ate as initiator. The effects of the factors such as solvent, amount of the initiator and reaction time were investigated. The copolymers were characterized by IR, H-1-NMR, H-1{P-31}-NMR, C-13-NMR, P-31{H-1}-NMR, and DSC. High molecular weight of the copolymer and high yield of the polymerization were achieved within 3 min at 25 degrees C. The polymerization process was studied by P-31{H-1}-NMR and transesterification was found during longer polymerization time.展开更多
Poly(ethylene glycol)-poly(n-butyl cyanoacrylate)(PEG-PBCA)is a remarkable drug delivery carrier for permeating blood-brain barrier.In this work,a novel high-gravity procedure was reported to intensify Knoevenagel con...Poly(ethylene glycol)-poly(n-butyl cyanoacrylate)(PEG-PBCA)is a remarkable drug delivery carrier for permeating blood-brain barrier.In this work,a novel high-gravity procedure was reported to intensify Knoevenagel condensation-Michael addition polymerization of PEG-PBCA.A series of PEG-PBCA containing different block ratios were synthesized with narrow molecular weight distribution of polydispersity indexes less than 1.1.Furthermore,the reaction time reduced 60%compared to conventional stirred tank reactor process.Chemical structures of as-prepared polymers were characterized.In vitro drug delivery performance was evaluated.The cytotoxicity of PEG-PBCA to brain microvessel endothelial cells(BMVEC)decreases with the extension of the PEG chain and the shortening of the PBCA chain.The polymer cellular uptake to BMVECs was better after improving hydrophilicity by PEG block.Results of bloodbrain barrier permeability demonstrated that medium length of PBCA chain and short PEG chain are favorable for hydrophobic Nile red permeation,while long PEG chain and short PBCA chain are beneficial to delivery water-soluble doxorubicin hydrochloride(Dox).The average apparent permeability coeffi-cient increased 1.7 and 0.25 times than that of raw Nile red and Dox,respectively.High-gravity intensi-fied condensation polymerization should have great potential in brain drug delivery system.展开更多
Po ly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of epsilon-caprolactone (epsilon-CL)...Po ly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of epsilon-caprolactone (epsilon-CL) and bishydroxyethylene terephthalate (BHET) in the presence of Ti(OBu)(4) was proposed for the synthesis of PCL-b-PET. The PCL-b-PET copolymer was characterized by IR, GPC and H-1-NMR techniques, and the effects of synthesis conditions, such as temperature, reaction time and concentration of catalyst on the copolymerization were discussed.展开更多
文摘The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, which contains both dibenzhydryl and phenyl groups, was determined by X-ray crystallography. The compound has a pseudo-tetrahedral geometry at the Ni center, showing pseudo-C2-symmetry. Upon activation with modified methylaluminoxane (MMAO), Ni1 exhibits high catalytic activity up to 1.02 × 107 g PE (mol Ni h)−1 toward ethylene polymerization, enabling the synthesis of high molecular weight branched polyethylene. The molecular weights and branching densities could be tuned over a very wide range. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature. The branching densities were decreased with increasing the polymerization temperature.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
文摘A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.
基金Supported by the National Natural Science Foundation of China(Nos 20674024 and 20374023)
文摘The copolymerization of ethylene with dieyclopentadiene (DCP) in the presence of a constrained geometry tetramethylcyclopentadi-enyl-phenoxytitanium catalyst [ 2,4-' Bu2-6-( 2,3,4,5-Me4 -Cp ) -PhO ] TICl2, combined with AI( iBu)3/Ph3C^+ B( CsF5 )4^- cocatalyst system was studied. The copolymers that were formed were characterized by ' H and ,3 C NMR, differential scanning calorimetry ( DSC), SEM, and X-ray diffraction (XRD) analyses. The re- suits of the analysis indicate that the copolymers of ethylene with dicyclopentadiene are amorphous and display two or more melting temperatures in their DSC diagrams. Moreover, the morphologies of the copolymers are quite different from that of polyethylenes.
基金the National Natural Science Foundation of China(Nos.20674097,20734004)the Ministry of Education of China(Foundation for Ph.D.Training).
文摘A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in...
基金National Natural Science Foundation of China (No. 20272062)
文摘Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for Cp_2ZrCl_2catalyst Results of X-ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, ultraviolet spectroscopy andscanning electron microscope measurements show that the catalytic sites have been linked through MAO on the PE-graft-4-vinylpyridine (PEVP). The percentages of grafting 4-vinylpyridine and supported Cp_2ZrCl_2 depend on the size ofpolyethylene powder. The smaller the polyethylene powder, the more percent of 4-vinylpyridine groups and Cp_2ZrCl_2 existon the polyethylene chains, and the PEVP-supported catalyst has a relatively high activity for ethylene polymerization.
基金This work is supported by PetroChina Company Limited (No.030414-01)
文摘Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.
基金Supported by the National Natural Science Foundation of China (No. 20376069).
文摘A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.
文摘Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.
文摘Aluminoxanes containing both ethyl and iso-butyl groups were synthesized by thehydrolysis of Al(C2H3)3 (TEA)/Al(i-C4H9)3 (TIBA) mixtures. The aluminoxane made from theTEA/TIBA mixture of molar ratio 7:3 showed cocatalyst activity of about five times as those ofethylaluminoxane or isobutylaluminoxane for ethylene polymerization catalyzed by Cp2ZrCl2. Thealuminoxane was characterized and the possible reasons for its high activity were discussed.
基金supported by the National Natural Science Foundation of China(No.20376069).
文摘A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygorskite with MAO or Al(i-Bu)3 was not necessary, gave the highest activity among these supported catalysts and could be more robust than homogeneous Cp2TiCl2. With the direct supported catalyst, no significant activity loss was observed under low Al/Ti molar ratios (Al/Ti=300) and the decay of polymerization rate was slower when compared to the other supported catalysts. It was found that the surface Lewis acidity of palygorskite after thermal treatment played an important role in activation of metallocene compound and resulted in high catalyst activity.
基金the National Natural Science Foundation of China(No.50573018)
文摘Three ansa-metallocenes(Me_2C)(Me_2Si)Cp_2TiCl_2(1),[(CH_2)_5C](Me_2Si)Cp_2TiCl_2 (2)and (Me_2C)(Me_2Si)Cp_2ZrCl_2 (3)with larger dihedral angles and longer distance from metal to the center of Cp planes were synthesized and used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO).In the case of ethylene polymerization,compared the feature structures of unbridged metallocenes, singly bridged metallocenes and doubly bridged metallocenes 1,2,3,there exhibit the relationship bet...
基金This work was partly supported by the Foundation of the Director of Institute of Chemistry, Chinese Academy of Sciences.
文摘The polymerization of ethylene by two iron-based catalysts, {[2,6-ArN=C(Me)(2)C5H3N]FeCl2} (Ar = 2,6-C6H3-Me-2 I; 2,6-C6H3 (i-Pr)(2) II) has been investigated. Catalyst II produces higher molecular weight polyethylene (PE) and broadened polydispersities relative to catalyst I under analogous conditions and all polymers are linear. The kinetic profiles with iron catalysts showed a smooth pattern during both rate build-up and rate lowering, which are different from the metallocene catalysts. The polymerization activity increases with Al/Fe value and an optimum temperature range at 40 similar to 45 degreesC was observed. The molecular weight of PE decreases with the increase of Al/Fe ratio and rise of polymerization temperature.
基金Fund by the National Natural Science Foundation of China (20374043)
文摘The condensation of acetylacetone (CH3COCH2COCH3) with benzdine (H2N-C6H4-C6H4-NH2) yielded diimine ligand 1 [HOC(Me)C(H)(Me)C=N(p-C6H4)(C6H4-p)N= C(Me)C(H)C(Me)OH)], which was converted into sodium salts. And then the sodium salts reacted with monosalicylaldiminato titanium complex 2{[3,5-di-But′2-(O)C6H2CHN(PH)]TiCl3(THF)} in dried dichloromethane to give a new benzdine-bridged binuclear complex 3{[3,5-di-Bu′-2-(O)C6H2CHN(PH)]2 [OC(Me)C(H)(Me)C=N(p-C6H4)-(C6H4-p)N=C(Me)C(H) C(Me)]Ti2Cl4}. The complex 3 was characterized by ^1HNMR and elemental analysis. In the presence of MAO(methylaluminoxane), the complex 3 in toluene was effective to catalyze polymerization, affording moderately high catalytic activity 1.93 × 10^5 g PE/(mol.Ti.h)]and high molecular weight polyethylene [5.63× 10^5 g/moll. The high temperature gel permeation chromatography (GPC) curve of polyethylene obtained revealed a single peak, but the molecular weight distribution (MWD = 3.21) is obviously broader than that of the similar mononuclear titanium complex. The melting points of the obtained polyethylene reaches 138 ℃, indicating that the polyethylene is of high crystallinity.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20374043,20074028)China Petroleum & Chemical Corporation(No.X503027).
文摘By treating disodium(thiophenedimethylene)dicyclopentadienide C4H2S(CH2C5H4Na)2 with two equivalent of CpTiCl3 or CpZrC13 DME at 0℃ in THF, two new thiophenedimethylene bridged binuclear metallocenes [Cl2MC5H5][C5H4CH2C4H2SCH2C5H4][C5H5MCl2] (M = Ti 3, M = Zr 4) were synthesized in high yield and their structures were characterized by ^1H-NMR. These complexes were used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). The effects of polymerization temperature, time, concentration of catalyst, molar ratio of MAO/Cat on polymerization were studied in detail. The catalytic activities of thiophenedimethylene bridged binuclear metallocene catalysts (3, 4) reached 2.44 × 10^5 g PE mol^-1 cat^-1· h^-1, 9.61 × 10^5 g PE mol^-1 · cat^-1· h^-1 respectively, which are higher than that of pheneyldimethylene bridged binuclear metallocene catalysts and much higher than that of corresponding mononuclear metallocenes (Cp2TiCl2 and Cp2ZrCl2). The molecular weight distribution curves of polyethylenes produced by binuclear metallocene catalysts (3, 4) and by mononuclear metallocene catalyst have only single peak, but the former (MWD = 3.5-4.7) is obviously broader than the latter (MWD = 2.0-2.2).
基金The work is sub sidized by Special Funds for Major State Basis Research Projects of China(No.G1999064801)
文摘A monocyclopentadienyl titanium complex containing 8-quinolinolato (QCpTiCl_2) was synthesized. Its activities in ethylene polymerization at various Al/Ti molar ratios, different temperatures and activation time were investigated. The activity with a Al/Ti molar ratio of 500 exhibited a maximum of 2.8×10~5 g/(mol.h) at 30℃. The activation time of QCpTiCl_2 with MAO before polymerization also plays a role on the activity. The structural properties of the produced polyethylene (molecular weight, molecular weight distribution and melting point) were discussed. Kinetic behaviors of ethylene polymerization with the QCpTiCl_2/MAO system at different Al/Ti molar ratios were studied. For the QCpTiMeCl/MAO system and the CpTiMe_2Cl/MAO system, binding energies of the examined intermediates were calculated by quantum-mechanical method based on ADF program, respectively. It is confirmed that the chlorinebridged adduct formed by the reaction of QCpTiMeCl with MAO is thermodynamically steady. In the case of the QCpTiMeCl/MAO system, olefin-separated ion pair (OSIP) mechanism is much favorable than ion-pair dissociation (IPD) mechanism. The experimental result on the CpTiMe_2Cl/MAO system showed lower activity for ethylene polymerization than that on the QCpTiMeCl/MAO system, which revealed that the CpTiMe_2Cl/MAO system is unfavorable to form active species with ethylene.
基金This work was financially supported by the National Natural Science Foundation of China (No. 29734141, 50103012) Core Research for Engineering Innovation KGCX2-203, the Foundation of "One Hundred Talents" program for W-H Sun, Chinese Academy of Sciences
文摘An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene polymerization and theeffects of polymerization conditions such as temperature, aluminum/iron molar ratio on the activity of catalyst and thecharacteristics of polyethylene were reported. The unsymmetric catalyst 1' has a good catalytic performance of 3.47×10~6 gPE·mol^(-1)·Fe·h^(-1) at 40℃ with aluminum/iron molar ratio = 2500. A dependence of catalyst activity on themethylaluminoxane (MAO) concentration and reaction temperature was found. The molecular weight (MW) of polyethylenewith broad dispersity is about 10~4-10~5 g/mol. The melting temperature and branching of polyethylenes vary with changingreaction temperature and aluminum/iron molar ratio.
基金Supported by the National Natural Science Foundation of China.
文摘Poly(ethylene methyl phosphate)-poly(ethylene glycol)-poly(ethylene methyl phosphate) triblock copolymers carrying hydroxyl group at both chain ends were synthesized with sodium poly(ethylene glycol)ate as initiator. The effects of the factors such as solvent, amount of the initiator and reaction time were investigated. The copolymers were characterized by IR, H-1-NMR, H-1{P-31}-NMR, C-13-NMR, P-31{H-1}-NMR, and DSC. High molecular weight of the copolymer and high yield of the polymerization were achieved within 3 min at 25 degrees C. The polymerization process was studied by P-31{H-1}-NMR and transesterification was found during longer polymerization time.
基金This work was supported by National Key Research and Development Program of China(2016YFA0201701).
文摘Poly(ethylene glycol)-poly(n-butyl cyanoacrylate)(PEG-PBCA)is a remarkable drug delivery carrier for permeating blood-brain barrier.In this work,a novel high-gravity procedure was reported to intensify Knoevenagel condensation-Michael addition polymerization of PEG-PBCA.A series of PEG-PBCA containing different block ratios were synthesized with narrow molecular weight distribution of polydispersity indexes less than 1.1.Furthermore,the reaction time reduced 60%compared to conventional stirred tank reactor process.Chemical structures of as-prepared polymers were characterized.In vitro drug delivery performance was evaluated.The cytotoxicity of PEG-PBCA to brain microvessel endothelial cells(BMVEC)decreases with the extension of the PEG chain and the shortening of the PBCA chain.The polymer cellular uptake to BMVECs was better after improving hydrophilicity by PEG block.Results of bloodbrain barrier permeability demonstrated that medium length of PBCA chain and short PEG chain are favorable for hydrophobic Nile red permeation,while long PEG chain and short PBCA chain are beneficial to delivery water-soluble doxorubicin hydrochloride(Dox).The average apparent permeability coeffi-cient increased 1.7 and 0.25 times than that of raw Nile red and Dox,respectively.High-gravity intensi-fied condensation polymerization should have great potential in brain drug delivery system.
基金This work was supported by 863 Programme of China No.715-002-0210 and the National Natural Science Foundation of China(No.59773022).
文摘Po ly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of epsilon-caprolactone (epsilon-CL) and bishydroxyethylene terephthalate (BHET) in the presence of Ti(OBu)(4) was proposed for the synthesis of PCL-b-PET. The PCL-b-PET copolymer was characterized by IR, GPC and H-1-NMR techniques, and the effects of synthesis conditions, such as temperature, reaction time and concentration of catalyst on the copolymerization were discussed.